88Echarts - 散点图(Distribution of Height and Weight)

简介: 88Echarts - 散点图(Distribution of Height and Weight)
效果图

源代码
<!DOCTYPE html>
<html>
  <head>
    <meta charset="utf-8">
    <title>ECharts</title>
    <!-- 引入 echarts.js -->
    <script src="js/echarts.min.js"></script>
  </head>
  <body>
    <!-- 为ECharts准备一个具备大小(宽高)的Dom -->
    <div id="main" style="width: 600px;height:400px;"></div>
    <script type="text/javascript">
      // 基于准备好的dom,初始化echarts实例
      var myChart = echarts.init(document.getElementById('main'));
      var option;
      option = {
        title : {
            text: '男性女性身高体重分布',
            subtext: '抽样调查来自: Heinz  2003'
        },
        grid: {
            left: '3%',
            right: '7%',
            bottom: '3%',
            containLabel: true
        },
        tooltip : {
            // trigger: 'axis',
            showDelay : 0,
            formatter : function (params) {
                if (params.value.length > 1) {
                    return params.seriesName + ' :<br/>'
                    + params.value[0] + 'cm '
                    + params.value[1] + 'kg ';
                }
                else {
                    return params.seriesName + ' :<br/>'
                    + params.name + ' : '
                    + params.value + 'kg ';
                }
            },
            axisPointer:{
                show: true,
                type : 'cross',
                lineStyle: {
                    type : 'dashed',
                    width : 1
                }
            }
        },
        toolbox: {
            feature: {
                dataZoom: {},
                brush: {
                    type: ['rect', 'polygon', 'clear']
                }
            }
        },
        brush: {
        },
        legend: {
            data: ['女性','男性'],
            left: 'center'
        },
        xAxis : [
            {
                type : 'value',
                scale:true,
                axisLabel : {
                    formatter: '{value} cm'
                },
                splitLine: {
                    show: false
                }
            }
        ],
        yAxis : [
            {
                type : 'value',
                scale:true,
                axisLabel : {
                    formatter: '{value} kg'
                },
                splitLine: {
                    show: false
                }
            }
        ],
        series : [
            {
                name:'女性',
                type:'scatter',
                data: [[161.2, 51.6], [167.5, 59.0], [159.5, 49.2], [157.0, 63.0], [155.8, 53.6],
                    [170.0, 59.0], [159.1, 47.6], [166.0, 69.8], [176.2, 66.8], [160.2, 75.2],
                    [172.5, 55.2], [170.9, 54.2], [172.9, 62.5], [153.4, 42.0], [160.0, 50.0],
                    [147.2, 49.8], [168.2, 49.2], [175.0, 73.2], [157.0, 47.8], [167.6, 68.8],
                    [159.5, 50.6], [175.0, 82.5], [166.8, 57.2], [176.5, 87.8], [170.2, 72.8],
                    [174.0, 54.5], [173.0, 59.8], [179.9, 67.3], [170.5, 67.8], [160.0, 47.0],
                    [154.4, 46.2], [162.0, 55.0], [176.5, 83.0], [160.0, 54.4], [152.0, 45.8],
                    [162.1, 53.6], [170.0, 73.2], [160.2, 52.1], [161.3, 67.9], [166.4, 56.6],
                    [168.9, 62.3], [163.8, 58.5], [167.6, 54.5], [160.0, 50.2], [161.3, 60.3],
                    [167.6, 58.3], [165.1, 56.2], [160.0, 50.2], [170.0, 72.9], [157.5, 59.8],
                    [167.6, 61.0], [160.7, 69.1], [163.2, 55.9], [152.4, 46.5], [157.5, 54.3],
                    [168.3, 54.8], [180.3, 60.7], [165.5, 60.0], [165.0, 62.0], [164.5, 60.3],
                    [156.0, 52.7], [160.0, 74.3], [163.0, 62.0], [165.7, 73.1], [161.0, 80.0],
                    [162.0, 54.7], [166.0, 53.2], [174.0, 75.7], [172.7, 61.1], [167.6, 55.7],
                    [151.1, 48.7], [164.5, 52.3], [163.5, 50.0], [152.0, 59.3], [169.0, 62.5],
                    [164.0, 55.7], [161.2, 54.8], [155.0, 45.9], [170.0, 70.6], [176.2, 67.2],
                    [170.0, 69.4], [162.5, 58.2], [170.3, 64.8], [164.1, 71.6], [169.5, 52.8],
                    [163.2, 59.8], [154.5, 49.0], [159.8, 50.0], [173.2, 69.2], [170.0, 55.9],
                    [161.4, 63.4], [169.0, 58.2], [166.2, 58.6], [159.4, 45.7], [162.5, 52.2],
                    [159.0, 48.6], [162.8, 57.8], [159.0, 55.6], [179.8, 66.8], [162.9, 59.4],
                    [161.0, 53.6], [151.1, 73.2], [168.2, 53.4], [168.9, 69.0], [173.2, 58.4],
                    [171.8, 56.2], [178.0, 70.6], [164.3, 59.8], [163.0, 72.0], [168.5, 65.2],
                    [166.8, 56.6], [172.7, 105.2], [163.5, 51.8], [169.4, 63.4], [167.8, 59.0],
                    [159.5, 47.6], [167.6, 63.0], [161.2, 55.2], [160.0, 45.0], [163.2, 54.0],
                    [162.2, 50.2], [161.3, 60.2], [149.5, 44.8], [157.5, 58.8], [163.2, 56.4],
                    [172.7, 62.0], [155.0, 49.2], [156.5, 67.2], [164.0, 53.8], [160.9, 54.4],
                    [162.8, 58.0], [167.0, 59.8], [160.0, 54.8], [160.0, 43.2], [168.9, 60.5],
                    [158.2, 46.4], [156.0, 64.4], [160.0, 48.8], [167.1, 62.2], [158.0, 55.5],
                    [167.6, 57.8], [156.0, 54.6], [162.1, 59.2], [173.4, 52.7], [159.8, 53.2],
                    [170.5, 64.5], [159.2, 51.8], [157.5, 56.0], [161.3, 63.6], [162.6, 63.2],
                    [160.0, 59.5], [168.9, 56.8], [165.1, 64.1], [162.6, 50.0], [165.1, 72.3],
                    [166.4, 55.0], [160.0, 55.9], [152.4, 60.4], [170.2, 69.1], [162.6, 84.5],
                    [170.2, 55.9], [158.8, 55.5], [172.7, 69.5], [167.6, 76.4], [162.6, 61.4],
                    [167.6, 65.9], [156.2, 58.6], [175.2, 66.8], [172.1, 56.6], [162.6, 58.6],
                    [160.0, 55.9], [165.1, 59.1], [182.9, 81.8], [166.4, 70.7], [165.1, 56.8],
                    [177.8, 60.0], [165.1, 58.2], [175.3, 72.7], [154.9, 54.1], [158.8, 49.1],
                    [172.7, 75.9], [168.9, 55.0], [161.3, 57.3], [167.6, 55.0], [165.1, 65.5],
                    [175.3, 65.5], [157.5, 48.6], [163.8, 58.6], [167.6, 63.6], [165.1, 55.2],
                    [165.1, 62.7], [168.9, 56.6], [162.6, 53.9], [164.5, 63.2], [176.5, 73.6],
                    [168.9, 62.0], [175.3, 63.6], [159.4, 53.2], [160.0, 53.4], [170.2, 55.0],
                    [162.6, 70.5], [167.6, 54.5], [162.6, 54.5], [160.7, 55.9], [160.0, 59.0],
                    [157.5, 63.6], [162.6, 54.5], [152.4, 47.3], [170.2, 67.7], [165.1, 80.9],
                    [172.7, 70.5], [165.1, 60.9], [170.2, 63.6], [170.2, 54.5], [170.2, 59.1],
                    [161.3, 70.5], [167.6, 52.7], [167.6, 62.7], [165.1, 86.3], [162.6, 66.4],
                    [152.4, 67.3], [168.9, 63.0], [170.2, 73.6], [175.2, 62.3], [175.2, 57.7],
                    [160.0, 55.4], [165.1, 104.1], [174.0, 55.5], [170.2, 77.3], [160.0, 80.5],
                    [167.6, 64.5], [167.6, 72.3], [167.6, 61.4], [154.9, 58.2], [162.6, 81.8],
                    [175.3, 63.6], [171.4, 53.4], [157.5, 54.5], [165.1, 53.6], [160.0, 60.0],
                    [174.0, 73.6], [162.6, 61.4], [174.0, 55.5], [162.6, 63.6], [161.3, 60.9],
                    [156.2, 60.0], [149.9, 46.8], [169.5, 57.3], [160.0, 64.1], [175.3, 63.6],
                    [169.5, 67.3], [160.0, 75.5], [172.7, 68.2], [162.6, 61.4], [157.5, 76.8],
                    [176.5, 71.8], [164.4, 55.5], [160.7, 48.6], [174.0, 66.4], [163.8, 67.3]
                ],
                markArea: {
                    silent: true,
                    itemStyle: {
                        normal: {
                            color: 'transparent',
                            borderWidth: 1,
                            borderType: 'dashed'
                        }
                    },
                    data: [[{
                        name: '女性分布区间',
                        xAxis: 'min',
                        yAxis: 'min'
                    }, {
                        xAxis: 'max',
                        yAxis: 'max'
                    }]]
                },
                markPoint : {
                    data : [
                        {type : 'max', name: '最大值'},
                        {type : 'min', name: '最小值'}
                    ]
                },
                markLine : {
                    lineStyle: {
                        normal: {
                            type: 'solid'
                        }
                    },
                    data : [
                        {type : 'average', name: '平均值'},
                        { xAxis: 160 }
                    ]
                }
            },
            {
                name:'男性',
                type:'scatter',
                data: [[174.0, 65.6], [175.3, 71.8], [193.5, 80.7], [186.5, 72.6], [187.2, 78.8],
                    [181.5, 74.8], [184.0, 86.4], [184.5, 78.4], [175.0, 62.0], [184.0, 81.6],
                    [180.0, 76.6], [177.8, 83.6], [192.0, 90.0], [176.0, 74.6], [174.0, 71.0],
                    [184.0, 79.6], [192.7, 93.8], [171.5, 70.0], [173.0, 72.4], [176.0, 85.9],
                    [176.0, 78.8], [180.5, 77.8], [172.7, 66.2], [176.0, 86.4], [173.5, 81.8],
                    [178.0, 89.6], [180.3, 82.8], [180.3, 76.4], [164.5, 63.2], [173.0, 60.9],
                    [183.5, 74.8], [175.5, 70.0], [188.0, 72.4], [189.2, 84.1], [172.8, 69.1],
                    [170.0, 59.5], [182.0, 67.2], [170.0, 61.3], [177.8, 68.6], [184.2, 80.1],
                    [186.7, 87.8], [171.4, 84.7], [172.7, 73.4], [175.3, 72.1], [180.3, 82.6],
                    [182.9, 88.7], [188.0, 84.1], [177.2, 94.1], [172.1, 74.9], [167.0, 59.1],
                    [169.5, 75.6], [174.0, 86.2], [172.7, 75.3], [182.2, 87.1], [164.1, 55.2],
                    [163.0, 57.0], [171.5, 61.4], [184.2, 76.8], [174.0, 86.8], [174.0, 72.2],
                    [177.0, 71.6], [186.0, 84.8], [167.0, 68.2], [171.8, 66.1], [182.0, 72.0],
                    [167.0, 64.6], [177.8, 74.8], [164.5, 70.0], [192.0, 101.6], [175.5, 63.2],
                    [171.2, 79.1], [181.6, 78.9], [167.4, 67.7], [181.1, 66.0], [177.0, 68.2],
                    [174.5, 63.9], [177.5, 72.0], [170.5, 56.8], [182.4, 74.5], [197.1, 90.9],
                    [180.1, 93.0], [175.5, 80.9], [180.6, 72.7], [184.4, 68.0], [175.5, 70.9],
                    [180.6, 72.5], [177.0, 72.5], [177.1, 83.4], [181.6, 75.5], [176.5, 73.0],
                    [175.0, 70.2], [174.0, 73.4], [165.1, 70.5], [177.0, 68.9], [192.0, 102.3],
                    [176.5, 68.4], [169.4, 65.9], [182.1, 75.7], [179.8, 84.5], [175.3, 87.7],
                    [184.9, 86.4], [177.3, 73.2], [167.4, 53.9], [178.1, 72.0], [168.9, 55.5],
                    [157.2, 58.4], [180.3, 83.2], [170.2, 72.7], [177.8, 64.1], [172.7, 72.3],
                    [165.1, 65.0], [186.7, 86.4], [165.1, 65.0], [174.0, 88.6], [175.3, 84.1],
                    [185.4, 66.8], [177.8, 75.5], [180.3, 93.2], [180.3, 82.7], [177.8, 58.0],
                    [177.8, 79.5], [177.8, 78.6], [177.8, 71.8], [177.8, 116.4], [163.8, 72.2],
                    [188.0, 83.6], [198.1, 85.5], [175.3, 90.9], [166.4, 85.9], [190.5, 89.1],
                    [166.4, 75.0], [177.8, 77.7], [179.7, 86.4], [172.7, 90.9], [190.5, 73.6],
                    [185.4, 76.4], [168.9, 69.1], [167.6, 84.5], [175.3, 64.5], [170.2, 69.1],
                    [190.5, 108.6], [177.8, 86.4], [190.5, 80.9], [177.8, 87.7], [184.2, 94.5],
                    [176.5, 80.2], [177.8, 72.0], [180.3, 71.4], [171.4, 72.7], [172.7, 84.1],
                    [172.7, 76.8], [177.8, 63.6], [177.8, 80.9], [182.9, 80.9], [170.2, 85.5],
                    [167.6, 68.6], [175.3, 67.7], [165.1, 66.4], [185.4, 102.3], [181.6, 70.5],
                    [172.7, 95.9], [190.5, 84.1], [179.1, 87.3], [175.3, 71.8], [170.2, 65.9],
                    [193.0, 95.9], [171.4, 91.4], [177.8, 81.8], [177.8, 96.8], [167.6, 69.1],
                    [167.6, 82.7], [180.3, 75.5], [182.9, 79.5], [176.5, 73.6], [186.7, 91.8],
                    [188.0, 84.1], [188.0, 85.9], [177.8, 81.8], [174.0, 82.5], [177.8, 80.5],
                    [171.4, 70.0], [185.4, 81.8], [185.4, 84.1], [188.0, 90.5], [188.0, 91.4],
                    [182.9, 89.1], [176.5, 85.0], [175.3, 69.1], [175.3, 73.6], [188.0, 80.5],
                    [188.0, 82.7], [175.3, 86.4], [170.5, 67.7], [179.1, 92.7], [177.8, 93.6],
                    [175.3, 70.9], [182.9, 75.0], [170.8, 93.2], [188.0, 93.2], [180.3, 77.7],
                    [177.8, 61.4], [185.4, 94.1], [168.9, 75.0], [185.4, 83.6], [180.3, 85.5],
                    [174.0, 73.9], [167.6, 66.8], [182.9, 87.3], [160.0, 72.3], [180.3, 88.6],
                    [167.6, 75.5], [186.7, 101.4], [175.3, 91.1], [175.3, 67.3], [175.9, 77.7],
                    [175.3, 81.8], [179.1, 75.5], [181.6, 84.5], [177.8, 76.6], [182.9, 85.0],
                    [177.8, 102.5], [184.2, 77.3], [179.1, 71.8], [176.5, 87.9], [188.0, 94.3],
                    [174.0, 70.9], [167.6, 64.5], [170.2, 77.3], [167.6, 72.3], [188.0, 87.3],
                    [174.0, 80.0], [176.5, 82.3], [180.3, 73.6], [167.6, 74.1], [188.0, 85.9],
                    [180.3, 73.2], [167.6, 76.3], [183.0, 65.9], [183.0, 90.9], [179.1, 89.1],
                    [170.2, 62.3], [177.8, 82.7], [179.1, 79.1], [190.5, 98.2], [177.8, 84.1],
                    [180.3, 83.2], [180.3, 83.2]
                ],
                markArea: {
                    silent: true,
                    itemStyle: {
                        normal: {
                            color: 'transparent',
                            borderWidth: 1,
                            borderType: 'dashed'
                        }
                    },
                    data: [[{
                        name: '男性分布区间',
                        xAxis: 'min',
                        yAxis: 'min'
                    }, {
                        xAxis: 'max',
                        yAxis: 'max'
                    }]]
                },
                markPoint : {
                    data : [
                        {type : 'max', name: '最大值'},
                        {type : 'min', name: '最小值'}
                    ]
                },
                markLine : {
                    lineStyle: {
                        normal: {
                            type: 'solid'
                        }
                    },
                    data : [
                        {type : 'average', name: '平均值'},
                        { xAxis: 170 }
                    ]
                }
            }
        ]
    };
      myChart.setOption(option);
    </script>
  </body>
</html>
目录
相关文章
174Echarts - 象形柱图(Wish List and Mountain Height)
174Echarts - 象形柱图(Wish List and Mountain Height)
39 0
174Echarts - 象形柱图(Wish List and Mountain Height)
22Echarts - 折线图(Distribution of Electricity)
22Echarts - 折线图(Distribution of Electricity)
31 0
|
2月前
|
小程序 前端开发 JavaScript
微信小程序图表制作利器:ECharts组件的使用与技巧
微信小程序图表制作利器:ECharts组件的使用与技巧
62 1
|
2月前
|
JavaScript
vue中使用echarts绘制双Y轴图表时,刻度没有对齐的两种解决方法
vue中使用echarts绘制双Y轴图表时,刻度没有对齐的两种解决方法
270 0
|
3月前
|
Web App开发 数据可视化 前端开发
Echart的使用初体验,Echarts的基本使用及语法格式,简单图表绘制和使用及图例添加【学习笔记】
本文介绍了ECharts的基本使用和语法格式,包括如何引入ECharts、创建容器、初始化echarts实例对象、配置option参数和一些基础图表的绘制方法。文章还提供了简单图表绘制和使用图例添加的示例代码,以及对ECharts特性和优势的概述。
Echart的使用初体验,Echarts的基本使用及语法格式,简单图表绘制和使用及图例添加【学习笔记】
|
4月前
|
小程序 JavaScript
微信小程序使用echarts图表(ec-canvas)
这篇文章介绍了在微信小程序中使用`ec-canvas`集成echarts图表的方法,包括解决加载时报错的问题、配置图表组件、以及在小程序页面中引入和使用这些图表组件的步骤。
494 1
微信小程序使用echarts图表(ec-canvas)
|
4月前
|
前端开发 数据可视化 JavaScript
Echarts如何实现多图表缩放和自适应?附源码
Echarts如何实现多图表缩放和自适应?附源码
Echarts如何实现多图表缩放和自适应?附源码
|
4月前
|
XML SQL JavaScript
在vue页面引入echarts,图表的数据来自数据库 springboot+mybatis+vue+elementui+echarts实现图表的制作
这篇文章介绍了如何在Vue页面中结合SpringBoot、MyBatis、ElementUI和ECharts,实现从数据库获取数据并展示为图表的过程,包括前端和后端的代码实现以及遇到的问题和解决方法。
在vue页面引入echarts,图表的数据来自数据库 springboot+mybatis+vue+elementui+echarts实现图表的制作
|
4月前
Echarts——如何默认选中图表并显示tooltip
Echarts——如何默认选中图表并显示tooltip
64 1
|
4月前
|
JavaScript
Echarts——VUE中非根节点时不显示图表也无报错
Echarts——VUE中非根节点时不显示图表也无报错
38 1
下一篇
无影云桌面