带你深度剖析《数据在内存中的存储》——C语言

简介: 我们知道一个变量的创建是要在内存中开辟空间的。空间的大小是根据不同的类型而决定的。那变量是以什么方式存储的呢?整型和浮点型的在内存中存储的方式一样吗?这篇文章会给出答案的。

我们知道一个变量的创建是要在内存中开辟空间的。空间的大小是根据不同的类型而决定的。那变量是以什么方式存储的呢整型和浮点型的在内存中存储的方式一样吗?这篇文章会给出答案的。


一、数据类型介绍


 数据类型整体大类上可分为:自定义类型和内置类型。


 其中自定义类型有:


结构体类型 struct;

数组;

枚举类型 enum;

联合类型 union。

 常见的内置类型有:char、short、int 、long、long long、float、double。其中char、short、int 、long、long long归为整型类,float、double为浮点类。


二、整型在内存中的存储方式

 我们知道一个整形有正负之分,且不同整形的大小也是不同的。例如,int型为四个字节、short型为两个字节、long long型为八个字节等等。那么在内存中是怎么存储区分正、负整形呢?不同类型大小的整形又是怎么区分的呢?我们先来来接一下原码、反码、补码的概念。


2、1 原码、反码、补码的讲解


 计算机中的整数有三种2进制表示方法,即原码、反码和补码。三种表示方法均有符号位和数值位两部分,且最高位为符号位。符号位都是用0表示“正”,用1表示“负”。而数值位正数的原、反、补码都相同。


 但是负数就有所差别了。负数的原码、反码、补码各不相同,分别如下:


原码:直接将数值按照正负数的形式翻译成二进制就可以得到原码。

反码:将原码的符号位不变,其他位依次按位取反就可以得到反码。

补码:反码+1就得到补码。

 对于整形来说,在内存中存储的都是补码。为什么要在内存中存储补码呢?


 在计算机系统中,数值一律用补码来表示和存储。原因在于,使用补码,可以将符号位和数值域统一处理;同时,加法和减法也可以统一处理(CPU只有加法器)此外,补码与原码相互转换,其运算过程是相同的,不需要额外的硬件电路。


 我们举一个实例看一下。我们给出如下两个整形变量,我们具体分析一下。

#include<stdio.h>
int main()
{
  int a = 20;
  int b = -10;
  return 0;
}


我们自己分析一下上述整型变量a和b的二进制表示方式。int型变量大小为4个字节,也就是32个比特位。根据上述的整数在内存的存储讲解分析,具体与下图:

  我们在通过编译器看一下内存,是否真的是这样的呢。如下图:


d4a41b79718e4521bd3658435aebd41f.png


3b8b049489754462bffefa89a9ea985e.png


我们发现,并不是像我们分析的那样耶。我们分析的并没有错误,整形在内存中的存储存储方式确实是以二进制存储的,但是是以十六进制的方式表示出来的。但是我们把二进制转换为十六进制后,我们可以看到对于a和b分别存储的是补码。但是我们发现顺序有点不对劲。这就与数据在内存中存储的大小端有关了。我们接下来讲解一下数据在内存中存储的大小端。


2、2 大小端介绍

2、2、1 大小端的概念


 大端(存储)模式:是指数据的低位保存在内存的高地址中,而数据的高位,保存在内存的低地址中;

 小端(存储)模式:是指数据的低位保存在内存的低地址中,而数据的高位,,保存在内存的高地址中。


 通过对大小端的概念了解后,我们就可以发现上述我们所举的例子是以小端的存储方式来存储的。


2、2、2 为什么要区分大小端存储呢?


 为什么会有大小端模式之分呢?这是因为在计算机系统中,我们是以字节为单位的,每个地址单元都对应着一个字节,一个字节为8 bit。但是在C语言中除了8 bit的char之外,还有16 bit的short型,32 bit的long型(要看具体的编译器),另外,对于位数大于8位的处理器,例如16位或者32位的处理器,由于寄存器宽度大于一个字节,那么必然存在着一个如何将多个字节安排的问题。因此就导致了大端存储模式和小端存储模式。


 例如:一个 16bit 的 short 型 x ,在内存中的地址为 0x0010 , x 的值为 0x1122 ,那么 0x11 为高字节, 0x22 为低字节。对于大端模式,就将 0x11 放在低地址中,即 0x0010 中, 0x22 放在高地址中,即 0x0011 中。小端模式,刚好相反。我们常用的 X86 结构是小端模式,而 KEIL C51 则为大端模式。很多的ARM,DSP都为小端模式。有些ARM处理器还可以由硬件来选择是大端模式还是小端模式。  


2、2、3 大小端判断练习

  我们了解大小端后,那怎么写出一个程序来判断存储方式是大端还是小段呢?我们根据大小端存储不同的特性就很容易写出。代码如下:

#include<stdio.h>
int main()
{
  int a = 1;
  char* p = (char*)&a;
  if (*p == 1)
  {
    printf("小端\n");
  }
  else
  {
    printf("大端\n");
  }
  return 0;
}


通过上面的学习,我们对整形在内存中的存储方式有了一个很好的了解。我们再看一下浮点数在内存中的存储方式。

三、浮点数在内存中的存储方式

3、1 浮点数在内存中的存储例题


 在了解浮点数在内存中的存储方式之前,我们先来看一个例子。代码如下:

int main()
{
  int n = 9;
  float* pFloat = (float*)&n;
  printf("n的值为:%d\n", n);
  printf("*pFloat的值为:%f\n", *pFloat);
  *pFloat = 9.0;
  printf("num的值为:%d\n", n);
  printf("*pFloat的值为:%f\n", *pFloat);
  return 0;
}


我们先自判断一下上面的输出结果。我们给出答案,如下图:

 num 和 *pFloat 在内存中明明是同一个数,为什么浮点数和整数的解读结果会差别这么大?

要理解这个结果,一定要搞懂浮点数在计算机内部的表示方法



3、2 浮点数在内存中的存储规则


根据国际标准IEEE(电气和电子工程协会) 754,任意一个二进制浮点数V可以表示成下面的形式:


(-1)^S * M * 2^E

(-1)^S表示符号位,当S=0,V为正数;当S=1,V为负数。

M表示有效数字,大于等于1,小于2。

2^E表示指数位

举例来说:十进制的5.0,写成二进制是 101.0 ,相当于 1.01×2^2 。那么,按照上面V的格式,可以得出S=0,M=1.01,E=2。十进制的-5.0,写成二进制是 -101.0 ,相当于 -1.01×2^2 。那么,S=1,M=1.01,E=2。


IEEE 754规定:

 对于32位的浮点数,最高的1位是符号位s,接着的8位是指数E,剩下的23位为有效数字M



ebaff9a96be6474a811be414d5a9258b.png



 

 对于64位的浮点数,最高的1位是符号位S,接着的11位是指数E,剩下的52位为有效数字M。

IEEE 754对有效数字M和指数E,还有一些特别规定。


前面说过, 1≤M<2 ,也就是说,M可以写成 1.xxxxxx 的形式,其中xxxxxx表示小数部分。

IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的xxxxxx部分。比如保存1.01的时候,只保存01,等到读取的时候,再把第一位的1加上去。这样做的目的,是节省1位有效数字。以32位浮点数为例,留给M只有23位,将第一位的1舍去以后,等于可以保存24位有效数字。


至于指数E,情况就比较复杂。

 首先,E为一个无符号整数(unsigned int)这意味着,如果E为8位,它的取值范围为0~255;如果E为11位,它的取值范围为0~2047。但是,我们知道,科学计数法中的E是可以出现负数的,所以IEEE 754规定,存入内存时E的真实值必须再加上一个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。比如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。


指数E从内存中取出还可以再分成三种情况:

 E不全为0或不全为1这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将有效数字M前加上第一位的1。比如:0.5(1/2)的二进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,则为1.0*2^(-1),其阶码为-1+127=126,表示为01111110,而尾数1.0去掉整数部分为0,补齐0到23位00000000000000000000000.


 E全为0这时,浮点数的指数E等于1-127(或者1-1023)即为真实值,有效数字M不再加上第一位的1,而是还原0.xxxxxx的小数。这样做是为了表示±0,以及接近于0的很小的数字。


 E全为1这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s)。


 通过上面对浮点数的了解,我们再看一下例题。


8ce401a14fb148f7be55906b520129b4.png



 例题中的第一个打印*pFloat的值:以浮点数存储方式访问9的整数二进制存储方式,其中E全为0,所以输出为0.000000;


 当*pFloat=9.0后,再以整形的方式打印n,其实是打印的以浮点数存储的二进制9(还原成十进制,正是 1091567616 ),就会打印出来一个很大的数。


总结



通过上面的讲述,我们应该对整数和浮点数的存储方式有了一个很好的了解。我们也会发现整数和浮点数在内存中的存储方式是不相同的。注意,浮点数存储方式没有原码、反码、补码这一说。原码、反码、补码只是对于整型来说的。我们应该多加来练习,掌握两者存储的方式和存储的区别。


 希望以上内容会对你有所帮助,感谢阅读ovo~  

相关文章
|
1月前
|
存储 程序员 编译器
C 语言中的数据类型转换:连接不同数据世界的桥梁
C语言中的数据类型转换是程序设计中不可或缺的一部分,它如同连接不同数据世界的桥梁,使得不同类型的变量之间能够互相传递和转换,确保了程序的灵活性与兼容性。通过强制类型转换或自动类型转换,C语言允许开发者在保证数据完整性的前提下,实现复杂的数据处理逻辑。
|
1月前
|
存储 编译器 程序员
【C语言】内存布局大揭秘 ! -《堆、栈和你从未听说过的内存角落》
在C语言中,内存布局是程序运行时非常重要的概念。内存布局直接影响程序的性能、稳定性和安全性。理解C程序的内存布局,有助于编写更高效和可靠的代码。本文将详细介绍C程序的内存布局,包括代码段、数据段、堆、栈等部分,并提供相关的示例和应用。
54 5
【C语言】内存布局大揭秘 ! -《堆、栈和你从未听说过的内存角落》
|
1月前
|
存储 缓存 算法
【C语言】内存管理函数详细讲解
在C语言编程中,内存管理是至关重要的。动态内存分配函数允许程序在运行时请求和释放内存,这对于处理不确定大小的数据结构至关重要。以下是C语言内存管理函数的详细讲解,包括每个函数的功能、标准格式、示例代码、代码解释及其输出。
71 6
|
1月前
|
存储 数据管理 C语言
C 语言中的文件操作:数据持久化的关键桥梁
C语言中的文件操作是实现数据持久化的重要手段,通过 fopen、fclose、fread、fwrite 等函数,可以实现对文件的创建、读写和关闭,构建程序与外部数据存储之间的桥梁。
|
2月前
|
传感器 人工智能 物联网
C 语言在计算机科学中尤其在硬件交互方面占据重要地位。本文探讨了 C 语言与硬件交互的主要方法,包括直接访问硬件寄存器、中断处理、I/O 端口操作、内存映射 I/O 和设备驱动程序开发
C 语言在计算机科学中尤其在硬件交互方面占据重要地位。本文探讨了 C 语言与硬件交互的主要方法,包括直接访问硬件寄存器、中断处理、I/O 端口操作、内存映射 I/O 和设备驱动程序开发,以及面临的挑战和未来趋势,旨在帮助读者深入了解并掌握这些关键技术。
64 6
|
2月前
|
存储 数据建模 程序员
C 语言结构体 —— 数据封装的利器
C语言结构体是一种用户自定义的数据类型,用于将不同类型的数据组合在一起,形成一个整体。它支持数据封装,便于管理和传递复杂数据,是程序设计中的重要工具。
|
2月前
|
大数据 C语言
C 语言动态内存分配 —— 灵活掌控内存资源
C语言动态内存分配使程序在运行时灵活管理内存资源,通过malloc、calloc、realloc和free等函数实现内存的申请与释放,提高内存使用效率,适应不同应用场景需求。
|
2月前
|
存储 算法 程序员
C 语言指针详解 —— 内存操控的魔法棒
《C 语言指针详解》深入浅出地讲解了指针的概念、使用方法及其在内存操作中的重要作用,被誉为程序员手中的“内存操控魔法棒”。本书适合C语言初学者及希望深化理解指针机制的开发者阅读。
|
2月前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
76 1
|
2月前
|
存储 C语言 计算机视觉
在C语言中指针数组和数组指针在动态内存分配中的应用
在C语言中,指针数组和数组指针均可用于动态内存分配。指针数组是数组的每个元素都是指针,可用于指向多个动态分配的内存块;数组指针则指向一个数组,可动态分配和管理大型数据结构。两者结合使用,灵活高效地管理内存。