带你读《图解算法小抄》十二、树(2)

简介: 带你读《图解算法小抄》十二、树(2)

带你读《图解算法小抄》十二、树(1)https://developer.aliyun.com/article/1348188?groupCode=tech_library

删除

remove(value)
  前置条件:value为要删除的节点的值,root为BST的根节点,count为BST中的项数
  后置条件:如果找到并删除了值为value的节点,则返回true;否则返回false
  nodeToRemove ← findNode(value)
  如果 nodeToRemove = ø
    返回 false
  结束如果
  parent ← findParent(value)
如果 count = 1
    root ← ø
  否则,如果 nodeToRemove.left = ø 并且 nodeToRemove.right = ø
    如果 nodeToRemove.value < parent.value
      parent.left ←  nodeToRemove.right
    否则
      parent.right ← nodeToRemove.right
    结束如果
  否则,如果 nodeToRemove.left != ø 并且 nodeToRemove.right != ø
    next ← nodeToRemove.right
    当 next.left != ø
      next ← next.left
    结束循环
    如果 next != nodeToRemove.right
      remove(next.value)
      nodeToRemove.value ← next.value
    否则
      nodeToRemove.value ← next.value
      nodeToRemove.right ← nodeToRemove.right.right
    结束如果
  否则
    如果 nodeToRemove.left = ø
      next ← nodeToRemove.right
    否则
      next ← nodeToRemove.left
    结束如果
    如果 root = nodeToRemove
      root = next
    否则,如果 parent.left = nodeToRemove
      parent.left = next
    否则,如果 parent.right = nodeToRemove
      parent.right = next
    结束如果
  结束如果
  count ← count - 1
  返回 true
结束remove

查找节点的父节点

findParent(value, root)
  前置条件:value为要查找其父节点的节点的值,root为BST的根节点
且不为ø
  后置条件:如果找到value的父节点,则返回对其的引用;否则返回ø
  如果 value = root.value
    返回 ø
  结束如果
  如果 value < root.value
    如果 root.left = ø
      返回 ø
    否则,如果 root.left.value = value
      返回 root
    否则
      返回 findParent(value, root.left)
    结束如果
  否则
    如果 root.right = ø
      返回 ø
    否则,如果 root.right.value = value
      返回 root
    否则
      返回 findParent(value, root.right)
    结束如果
  结束如果
结束findParent

带你读《图解算法小抄》十二、树(3)https://developer.aliyun.com/article/1348185?groupCode=tech_library

相关文章
|
4月前
|
存储 算法 C语言
"揭秘C语言中的王者之树——红黑树:一场数据结构与算法的华丽舞蹈,让你的程序效率飙升,直击性能巅峰!"
【8月更文挑战第20天】红黑树是自平衡二叉查找树,通过旋转和重着色保持平衡,确保高效执行插入、删除和查找操作,时间复杂度为O(log n)。本文介绍红黑树的基本属性、存储结构及其C语言实现。红黑树遵循五项基本规则以保持平衡状态。在C语言中,节点包含数据、颜色、父节点和子节点指针。文章提供了一个示例代码框架,用于创建节点、插入节点并执行必要的修复操作以维护红黑树的特性。
104 1
|
19天前
|
算法
树的遍历算法有哪些?
不同的遍历算法适用于不同的应用场景。深度优先搜索常用于搜索、路径查找等问题;广度优先搜索则在图的最短路径、层次相关的问题中较为常用;而二叉搜索树的遍历在数据排序、查找等方面有重要应用。
24 2
|
6月前
|
存储 算法 Java
Java中,树与图的算法涉及二叉树的前序、中序、后序遍历以及DFS和BFS搜索。
【6月更文挑战第21天】Java中,树与图的算法涉及二叉树的前序、中序、后序遍历以及DFS和BFS搜索。二叉树遍历通过访问根、左、右子节点实现。DFS采用递归遍历图的节点,而BFS利用队列按层次访问。以下是简化的代码片段:[Java代码略]
48 4
|
2月前
|
存储 算法 关系型数据库
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
这篇文章主要介绍了多路查找树的基本概念,包括二叉树的局限性、多叉树的优化、B树及其变体(如2-3树、B+树、B*树)的特点和应用,旨在帮助读者理解这些数据结构在文件系统和数据库系统中的重要性和效率。
24 0
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
|
6月前
|
存储 算法 Linux
【数据结构和算法】---二叉树(1)--树概念及结构
【数据结构和算法】---二叉树(1)--树概念及结构
52 0
|
3月前
|
大数据 UED 开发者
实战演练:利用Python的Trie树优化搜索算法,性能飙升不是梦!
在数据密集型应用中,高效搜索算法至关重要。Trie树(前缀树/字典树)通过优化字符串处理和搜索效率成为理想选择。本文通过Python实战演示Trie树构建与应用,显著提升搜索性能。Trie树利用公共前缀减少查询时间,支持快速插入、删除和搜索。以下为简单示例代码,展示如何构建及使用Trie树进行搜索与前缀匹配,适用于自动补全、拼写检查等场景,助力提升应用性能与用户体验。
58 2
|
2月前
|
存储 算法
数据结构与算法学习十六:树的知识、二叉树、二叉树的遍历(前序、中序、后序、层次)、二叉树的查找(前序、中序、后序、层次)、二叉树的删除
这篇文章主要介绍了树和二叉树的基础知识,包括树的存储方式、二叉树的定义、遍历方法(前序、中序、后序、层次遍历),以及二叉树的查找和删除操作。
28 0
|
2月前
|
存储 算法 Java
数据结构和算法--分段树
数据结构和算法--分段树
17 0
|
5月前
|
大数据 UED 开发者
实战演练:利用Python的Trie树优化搜索算法,性能飙升不是梦!
【7月更文挑战第19天】Trie树,又称前缀树,是优化字符串搜索的高效数据结构。通过利用公共前缀,Trie树能快速插入、删除和查找字符串。
114 2