二十三、树
访问 www.coding-time.cn 阅读原文动画效果,体验更佳。
1.广度优先搜索(BFS)
广度优先搜索(BFS)是一种用于遍历或搜索树或图数据结构的算法。它从树根(或图中的任意节点,有时称为“搜索键”)开始,首先探索邻居节点,然后再移动到下一层的邻居节点。
1)伪代码
BFS(root) Pre: root is the node of the BST Post: the nodes in the BST have been visited in breadth first order q ← queue while root = ø yield root.value if root.left = ø q.enqueue(root.left) end if if root.right = ø q.enqueue(root.right) end if if !q.isEmpty() root ← q.dequeue() else root ← ø end if end while end BFS
2)完整实现
import Queue from '../../../data-structures/queue/Queue'; /** * @typedef {Object} Callbacks * @property {function(node: BinaryTreeNode, child: BinaryTreeNode): boolean} allowTraversal - * Determines whether BFS should traverse from the node to its child. * @property {function(node: BinaryTreeNode)} enterNode - Called when BFS enters the node. * @property {function(node: BinaryTreeNode)} leaveNode - Called when BFS leaves the node. */ /** * @param {Callbacks} [callbacks] * @returns {Callbacks} */function initCallbacks(callbacks = {}) { const initiatedCallback = callbacks; const stubCallback = () => {}; const defaultAllowTraversal = () => true; initiatedCallback.allowTraversal = callbacks.allowTraversal || defaultAllowTraversal; initiatedCallback.enterNode = callbacks.enterNode || stubCallback; initiatedCallback.leaveNode = callbacks.leaveNode || stubCallback; return initiatedCallback; } /** * @param {BinaryTreeNode} rootNode * @param {Callbacks} [originalCallbacks] */export default function breadthFirstSearch(rootNode, originalCallbacks) { const callbacks = initCallbacks(originalCallbacks); const nodeQueue = new Queue(); // Do initial queue setup. nodeQueue.enqueue(rootNode); while (!nodeQueue.isEmpty()) { const currentNode = nodeQueue.dequeue(); callbacks.enterNode(currentNode); // Add all children to the queue for future traversals. // Traverse left branch. if (currentNode.left && callbacks.allowTraversal(currentNode, currentNode.left)) { nodeQueue.enqueue(currentNode.left); } // Traverse right branch. if (currentNode.right && callbacks.allowTraversal(currentNode, currentNode.right)) { nodeQueue.enqueue(currentNode.right); } callbacks.leaveNode(currentNode); } }
3)参考资料
Wikipedia
Tree Traversals (Inorder, Preorder and Postorder)
带你读《图解算法小抄》二十三、树(2)https://developer.aliyun.com/article/1347836?groupCode=tech_library