由浅入深Netty基础知识NIO三大组件原理实战 1

简介: 由浅入深Netty基础知识NIO三大组件原理实战

1 三大组件

non-blocking io 非阻塞 IO

1.1 Channel & Buffer

channel 有一点类似于 stream,它就是读写数据的双向通道,可以从 channel 将数据读入 buffer,也可以将 buffer 的数据写入 channel,而之前的 stream 要么是输入,要么是输出,channel 比 stream 更为底层

image.png


常见的 Channel 有

  • FileChannel
  • DatagramChannel
  • SocketChannel
  • ServerSocketChannel

buffer 则用来缓冲读写数据,常见的 buffer 有

  • ByteBuffer
  • MappedByteBuffer
  • DirectByteBuffer
  • HeapByteBuffer
  • ShortBuffer
  • IntBuffer
  • LongBuffer
  • FloatBuffer
  • DoubleBuffer
  • CharBuffer

1.2 Selector

selector 单从字面意思不好理解,需要结合服务器的设计演化来理解它的用途

1.3 多线程版设计

image.png

1.4 多线程版缺点

  • 内存占用高
  • 线程上下文切换成本高
  • 只适合连接数少的场景

1.5 线程池版设计

image.png

1.6 线程池版缺点

  • 阻塞模式下,线程仅能处理一个 socket 连接
  • 仅适合短连接场景

1.7 selector 版设计

selector 的作用就是配合一个线程来管理多个 channel,获取这些 channel 上发生的事件,这些 channel 工作在非阻塞模式下,不会让线程吊死在一个 channel 上。适合连接数特别多,但流量低的场景(low traffic)

image.png

调用 selector 的 select() 会阻塞直到 channel 发生了读写就绪事件,这些事件发生,select 方法就会返回这些事件交给 thread 来处理

2 ByteBuffer

有一普通文本文件 data.txt,内容为

1234567890abcd

使用 FileChannel 来读取文件内容

@Slf4j
public class ChannelDemo1 {
    public static void main(String[] args) {
        try (RandomAccessFile file = new RandomAccessFile("helloword/data.txt", "rw")) {
            FileChannel channel = file.getChannel();
            ByteBuffer buffer = ByteBuffer.allocate(10);
            do {
                // 向 buffer 写入
                int len = channel.read(buffer);
                log.debug("读到字节数:{}", len);
                if (len == -1) {
                    break;
                }
                // 切换 buffer 读模式
                buffer.flip();
                while(buffer.hasRemaining()) {
                    log.debug("{}", (char)buffer.get());
                }
                // 切换 buffer 写模式
                buffer.clear();
            } while (true);
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
}

输出

10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - 读到字节数:10
10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - 1
10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - 2
10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - 3
10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - 4
10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - 5
10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - 6
10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - 7
10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - 8
10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - 9
10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - 0
10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - 读到字节数:4
10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - a
10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - b
10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - c
10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - d
10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - 读到字节数:-1

2.1 ByteBuffer 正确使用姿势

  1. 向 buffer 写入数据,例如调用 channel.read(buffer)
  2. 调用 flip() 切换至读模式
  3. 从 buffer 读取数据,例如调用 buffer.get()
  1. 调用 clear() 或 compact() 切换至写模式
  2. 重复 1~4 步骤

2.2 ByteBuffer 结构

ByteBuffer 有以下重要属性

  • capacity
  • position
  • limit

一开始

写模式下,position 是写入位置,limit 等于容量,下图表示写入了 4 个字节后的状态

flip 动作发生后,position 切换为读取位置,limit 切换为读取限制

读取 4 个字节后,状态

clear 动作发生后,状态

compact 方法,是把未读完的部分向前压缩,然后切换至写模式

2.3 调试工具类

public class ByteBufferUtil {
    private static final char[] BYTE2CHAR = new char[256];
    private static final char[] HEXDUMP_TABLE = new char[256 * 4];
    private static final String[] HEXPADDING = new String[16];
    private static final String[] HEXDUMP_ROWPREFIXES = new String[65536 >>> 4];
    private static final String[] BYTE2HEX = new String[256];
    private static final String[] BYTEPADDING = new String[16];
    static {
        final char[] DIGITS = "0123456789abcdef".toCharArray();
        for (int i = 0; i < 256; i++) {
            HEXDUMP_TABLE[i << 1] = DIGITS[i >>> 4 & 0x0F];
            HEXDUMP_TABLE[(i << 1) + 1] = DIGITS[i & 0x0F];
        }
        int i;
        // Generate the lookup table for hex dump paddings
        for (i = 0; i < HEXPADDING.length; i++) {
            int padding = HEXPADDING.length - i;
            StringBuilder buf = new StringBuilder(padding * 3);
            for (int j = 0; j < padding; j++) {
                buf.append("   ");
            }
            HEXPADDING[i] = buf.toString();
        }
        // Generate the lookup table for the start-offset header in each row (up to 64KiB).
        for (i = 0; i < HEXDUMP_ROWPREFIXES.length; i++) {
            StringBuilder buf = new StringBuilder(12);
            buf.append(NEWLINE);
            buf.append(Long.toHexString(i << 4 & 0xFFFFFFFFL | 0x100000000L));
            buf.setCharAt(buf.length() - 9, '|');
            buf.append('|');
            HEXDUMP_ROWPREFIXES[i] = buf.toString();
        }
        // Generate the lookup table for byte-to-hex-dump conversion
        for (i = 0; i < BYTE2HEX.length; i++) {
            BYTE2HEX[i] = ' ' + StringUtil.byteToHexStringPadded(i);
        }
        // Generate the lookup table for byte dump paddings
        for (i = 0; i < BYTEPADDING.length; i++) {
            int padding = BYTEPADDING.length - i;
            StringBuilder buf = new StringBuilder(padding);
            for (int j = 0; j < padding; j++) {
                buf.append(' ');
            }
            BYTEPADDING[i] = buf.toString();
        }
        // Generate the lookup table for byte-to-char conversion
        for (i = 0; i < BYTE2CHAR.length; i++) {
            if (i <= 0x1f || i >= 0x7f) {
                BYTE2CHAR[i] = '.';
            } else {
                BYTE2CHAR[i] = (char) i;
            }
        }
    }
    /**
     * 打印所有内容
     * @param buffer
     */
    public static void debugAll(ByteBuffer buffer) {
        int oldlimit = buffer.limit();
        buffer.limit(buffer.capacity());
        StringBuilder origin = new StringBuilder(256);
        appendPrettyHexDump(origin, buffer, 0, buffer.capacity());
        System.out.println("+--------+-------------------- all ------------------------+----------------+");
        System.out.printf("position: [%d], limit: [%d]\n", buffer.position(), oldlimit);
        System.out.println(origin);
        buffer.limit(oldlimit);
    }
    /**
     * 打印可读取内容
     * @param buffer
     */
    public static void debugRead(ByteBuffer buffer) {
        StringBuilder builder = new StringBuilder(256);
        appendPrettyHexDump(builder, buffer, buffer.position(), buffer.limit() - buffer.position());
        System.out.println("+--------+-------------------- read -----------------------+----------------+");
        System.out.printf("position: [%d], limit: [%d]\n", buffer.position(), buffer.limit());
        System.out.println(builder);
    }
    private static void appendPrettyHexDump(StringBuilder dump, ByteBuffer buf, int offset, int length) {
        if (isOutOfBounds(offset, length, buf.capacity())) {
            throw new IndexOutOfBoundsException(
                    "expected: " + "0 <= offset(" + offset + ") <= offset + length(" + length
                            + ") <= " + "buf.capacity(" + buf.capacity() + ')');
        }
        if (length == 0) {
            return;
        }
        dump.append(
                "         +-------------------------------------------------+" +
                        NEWLINE + "         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |" +
                        NEWLINE + "+--------+-------------------------------------------------+----------------+");
        final int startIndex = offset;
        final int fullRows = length >>> 4;
        final int remainder = length & 0xF;
        // Dump the rows which have 16 bytes.
        for (int row = 0; row < fullRows; row++) {
            int rowStartIndex = (row << 4) + startIndex;
            // Per-row prefix.
            appendHexDumpRowPrefix(dump, row, rowStartIndex);
            // Hex dump
            int rowEndIndex = rowStartIndex + 16;
            for (int j = rowStartIndex; j < rowEndIndex; j++) {
                dump.append(BYTE2HEX[getUnsignedByte(buf, j)]);
            }
            dump.append(" |");
            // ASCII dump
            for (int j = rowStartIndex; j < rowEndIndex; j++) {
                dump.append(BYTE2CHAR[getUnsignedByte(buf, j)]);
            }
            dump.append('|');
        }
        // Dump the last row which has less than 16 bytes.
        if (remainder != 0) {
            int rowStartIndex = (fullRows << 4) + startIndex;
            appendHexDumpRowPrefix(dump, fullRows, rowStartIndex);
            // Hex dump
            int rowEndIndex = rowStartIndex + remainder;
            for (int j = rowStartIndex; j < rowEndIndex; j++) {
                dump.append(BYTE2HEX[getUnsignedByte(buf, j)]);
            }
            dump.append(HEXPADDING[remainder]);
            dump.append(" |");
            // Ascii dump
            for (int j = rowStartIndex; j < rowEndIndex; j++) {
                dump.append(BYTE2CHAR[getUnsignedByte(buf, j)]);
            }
            dump.append(BYTEPADDING[remainder]);
            dump.append('|');
        }
        dump.append(NEWLINE +
                "+--------+-------------------------------------------------+----------------+");
    }
    private static void appendHexDumpRowPrefix(StringBuilder dump, int row, int rowStartIndex) {
        if (row < HEXDUMP_ROWPREFIXES.length) {
            dump.append(HEXDUMP_ROWPREFIXES[row]);
        } else {
            dump.append(NEWLINE);
            dump.append(Long.toHexString(rowStartIndex & 0xFFFFFFFFL | 0x100000000L));
            dump.setCharAt(dump.length() - 9, '|');
            dump.append('|');
        }
    }
    public static short getUnsignedByte(ByteBuffer buffer, int index) {
        return (short) (buffer.get(index) & 0xFF);
    }
}


目录
相关文章
|
4月前
|
Java 调度
Netty运行原理问题之ChannelHandler在Netty中扮演什么角色
Netty运行原理问题之ChannelHandler在Netty中扮演什么角色
|
1月前
|
消息中间件 缓存 Java
java nio,netty,kafka 中经常提到“零拷贝”到底是什么?
零拷贝技术 Zero-Copy 是指计算机执行操作时,可以直接从源(如文件或网络套接字)将数据传输到目标缓冲区, 而不需要 CPU 先将数据从某处内存复制到另一个特定区域,从而减少上下文切换以及 CPU 的拷贝时间。
java nio,netty,kafka 中经常提到“零拷贝”到底是什么?
|
3月前
NIO-编程实战(二)
NIO-编程实战(二)
|
3月前
|
Java
Netty BIO/NIO/AIO介绍
Netty BIO/NIO/AIO介绍
|
2月前
|
Java Linux 应用服务中间件
【编程进阶知识】高并发场景下Bio与Nio的比较及原理示意图
本文介绍了在Linux系统上使用Tomcat部署Java应用程序时,BIO(阻塞I/O)和NIO(非阻塞I/O)在网络编程中的实现和性能差异。BIO采用传统的线程模型,每个连接请求都会创建一个新线程进行处理,导致在高并发场景下存在严重的性能瓶颈,如阻塞等待和线程创建开销大等问题。而NIO则通过事件驱动机制,利用事件注册、事件轮询器和事件通知,实现了更高效的连接管理和数据传输,避免了阻塞和多级数据复制,显著提升了系统的并发处理能力。
71 0
|
3月前
|
缓存 Java Linux
NIO-编程实战(一)
NIO-编程实战(一)
|
4月前
|
网络协议 C# 开发者
WPF与Socket编程的完美邂逅:打造流畅网络通信体验——从客户端到服务器端,手把手教你实现基于Socket的实时数据交换
【8月更文挑战第31天】网络通信在现代应用中至关重要,Socket编程作为其实现基础,即便在主要用于桌面应用的Windows Presentation Foundation(WPF)中也发挥着重要作用。本文通过最佳实践,详细介绍如何在WPF应用中利用Socket实现网络通信,包括创建WPF项目、设计用户界面、实现Socket通信逻辑及搭建简单服务器端的全过程。具体步骤涵盖从UI设计到前后端交互的各个环节,并附有详尽示例代码,助力WPF开发者掌握这一关键技术,拓展应用程序的功能与实用性。
150 0
|
4月前
|
存储 网络协议 Java
【Netty 神奇之旅】Java NIO 基础全解析:从零开始玩转高效网络编程!
【8月更文挑战第24天】本文介绍了Java NIO,一种非阻塞I/O模型,极大提升了Java应用程序在网络通信中的性能。核心组件包括Buffer、Channel、Selector和SocketChannel。通过示例代码展示了如何使用Java NIO进行服务器与客户端通信。此外,还介绍了基于Java NIO的高性能网络框架Netty,以及如何用Netty构建TCP服务器和客户端。熟悉这些技术和概念对于开发高并发网络应用至关重要。
89 0
|
5月前
|
Java 大数据
解析Java中的NIO与传统IO的区别与应用
解析Java中的NIO与传统IO的区别与应用
|
5月前
|
Java
Java中的NIO编程详解
Java中的NIO编程详解
下一篇
DataWorks