前端学习笔记202306学习笔记第四十六天-vue-vue渲染流程7

简介: 前端学习笔记202306学习笔记第四十六天-vue-vue渲染流程7

image.png

image.png

image.png

image.png

相关文章
|
1月前
|
存储 人工智能 前端开发
前端大模型应用笔记(三):Vue3+Antdv+transformers+本地模型实现浏览器端侧增强搜索
本文介绍了一个纯前端实现的增强列表搜索应用,通过使用Transformer模型,实现了更智能的搜索功能,如使用“番茄”可以搜索到“西红柿”。项目基于Vue3和Ant Design Vue,使用了Xenova的bge-base-zh-v1.5模型。文章详细介绍了从环境搭建、数据准备到具体实现的全过程,并展示了实际效果和待改进点。
133 2
|
1月前
|
JavaScript 前端开发 程序员
前端学习笔记——node.js
前端学习笔记——node.js
41 0
|
26天前
|
JavaScript 前端开发 Docker
前端全栈之路Deno篇(二):几行代码打包后接近100M?别慌,带你掌握Deno2.0的安装到项目构建全流程、剖析构建物并了解其好处
在使用 Deno 构建项目时,生成的可执行文件体积较大,通常接近 100 MB,而 Node.js 构建的项目体积则要小得多。这是由于 Deno 包含了完整的 V8 引擎和运行时,使其能够在目标设备上独立运行,无需额外安装依赖。尽管体积较大,但 Deno 提供了更好的安全性和部署便利性。通过裁剪功能、使用压缩工具等方法,可以优化可执行文件的体积。
106 3
前端全栈之路Deno篇(二):几行代码打包后接近100M?别慌,带你掌握Deno2.0的安装到项目构建全流程、剖析构建物并了解其好处
|
22天前
|
监控 JavaScript 前端开发
Vue 异步渲染
【10月更文挑战第23天】Vue 异步渲染是提高应用性能和用户体验的重要手段。通过理解异步渲染的原理和优化策略,我们可以更好地利用 Vue 的优势,开发出高效、流畅的前端应用。同时,在实际开发中,要注意数据一致性、性能监控和调试等问题,确保应用的稳定性和可靠性。
|
26天前
|
JavaScript 前端开发 算法
前端优化之超大数组更新:深入分析Vue/React/Svelte的更新渲染策略
本文对比了 Vue、React 和 Svelte 在数组渲染方面的实现方式和优缺点,探讨了它们与直接操作 DOM 的差异及 Web Components 的实现方式。Vue 通过响应式系统自动管理数据变化,React 利用虚拟 DOM 和 `diffing` 算法优化更新,Svelte 通过编译时优化提升性能。文章还介绍了数组更新的优化策略,如使用 `key`、分片渲染、虚拟滚动等,帮助开发者在处理大型数组时提升性能。总结指出,选择合适的框架应根据项目复杂度和性能需求来决定。
|
1月前
|
前端开发 JavaScript API
深度剖析:前端如何驾驭海量数据,实现流畅渲染的多种途径
深度剖析:前端如何驾驭海量数据,实现流畅渲染的多种途径
71 3
|
1月前
|
存储 弹性计算 算法
前端大模型应用笔记(四):如何在资源受限例如1核和1G内存的端侧或ECS上运行一个合适的向量存储库及如何优化
本文探讨了在资源受限的嵌入式设备(如1核处理器和1GB内存)上实现高效向量存储和检索的方法,旨在支持端侧大模型应用。文章分析了Annoy、HNSWLib、NMSLib、FLANN、VP-Trees和Lshbox等向量存储库的特点与适用场景,推荐Annoy作为多数情况下的首选方案,并提出了数据预处理、索引优化、查询优化等策略以提升性能。通过这些方法,即使在资源受限的环境中也能实现高效的向量检索。
|
1月前
|
机器学习/深度学习 弹性计算 自然语言处理
前端大模型应用笔记(二):最新llama3.2小参数版本1B的古董机测试 - 支持128K上下文,表现优异,和移动端更配
llama3.1支持128K上下文,6万字+输入,适用于多种场景。模型能力超出预期,但处理中文时需加中英翻译。测试显示,其英文支持较好,中文则需改进。llama3.2 1B参数量小,适合移动端和资源受限环境,可在阿里云2vCPU和4G ECS上运行。
|
1月前
|
前端开发 算法 测试技术
前端大模型应用笔记(五):大模型基础能力大比拼-计数篇-通义千文 vs 文心一言 vs 智谱 vs 讯飞vsGPT
本文对比测试了通义千文、文心一言、智谱和讯飞等多个国产大模型在处理基础计数问题上的表现,特别是通过链式推理(COT)提示的效果。结果显示,GPTo1-mini、文心一言3.5和讯飞4.0Ultra在首轮测试中表现优秀,而其他模型在COT提示后也能显著提升正确率,唯有讯飞4.0-Lite表现不佳。测试强调了COT在提升模型逻辑推理能力中的重要性,并指出免费版本中智谱GLM较为可靠。
前端大模型应用笔记(五):大模型基础能力大比拼-计数篇-通义千文 vs 文心一言 vs 智谱 vs 讯飞vsGPT
|
1月前
|
人工智能 自然语言处理 运维
前端大模型应用笔记(一):两个指令反过来说大模型就理解不了啦?或许该让第三者插足啦 -通过引入中间LLM预处理用户输入以提高多任务处理能力
本文探讨了在多任务处理场景下,自然语言指令解析的困境及解决方案。通过增加一个LLM解析层,将复杂的指令拆解为多个明确的步骤,明确操作类型与对象识别,处理任务依赖关系,并将自然语言转化为具体的工具命令,从而提高指令解析的准确性和执行效率。