线程的中断协商机制
什么是中断
一个线程不应该由其他线程来强制中断或停止,而是应该由线程自己自行停止。所以,Thread.stop、Thread.suspend、Thread. resume都已经被废弃了。
在Java中没有办法立即停止一条线程,然而停止线程却显得尤为重要,如取消一个耗时操作。
因此,Java提供了一种用于停止线程的机制即中断。中断只是一种协作机制,Java没有给中断增加任何语法,中断的实现完全需要程序员自己实现。
1、每个线程对象中都有一个标识,用于标识线程是否被中断;该标识位为true表示中断,为false表示未中断;若要中断协商一个线程,你需要手动调用该线程的interrupt方法,该方法也仅仅是
将线程对象的中断标识设为true。
2、interrupt可以在别的线程中调用,也可以在自己的线程中调用
interrupt
线程t1线程t2,当线程t2调用t1.interrupt()时
中断协商:如果t1线程处于正常活动状态,当线程t2调用t1.interrupt()时,那么会将t1线程的中断标志设置为true,仅此而已。t1线程将继续正常运行不受影响
isInterrupted
通过检查中断标志位判断当前线程是否被中断
●若中断标志为true,则isInterrupted返回true
●若中断标志为false,则isInterrupted返回false
静态方法interrupted
判断线程是否被中断,并清除当前中断状态,这个方法做了两件事:
●返回当前线程的中断状态
●将当前线程的中断状态重置即设为false
假设有两个线程A、B,线程B调用了interrupt方法。
后面如果我们连接调用两次interrupted方法,第一次会返回true,然后这个方法会将中断标识位设置位false,
所以第二次调用interrupted将返回false
中断运行中的线程
volatile
static volatile boolean isStop = false; public static void main(String[] args) { new Thread(() -> { while (true) { if (isStop) { System.out.println(Thread.currentThread().getName() + "\t isStop被修改为true,程序停止"); break; } System.out.println("t1 -----hello volatile"); } }, "t1").start(); //暂停毫秒 try { TimeUnit.MILLISECONDS.sleep(20); } catch (InterruptedException e) { e.printStackTrace(); } new Thread(() -> { isStop = true; }, "t2").start(); }
AtomicBoolean
static AtomicBoolean atomicBoolean = new AtomicBoolean(false); public static void main(String[] args) { new Thread(() -> { while (true) { if (atomicBoolean.get()) { System.out.println(Thread.currentThread().getName() + "\t atomicBoolean被修改为true,程序停止"); break; } System.out.println("t1 -----hello atomicBoolean"); } }, "t1").start(); //暂停毫秒 try { TimeUnit.MILLISECONDS.sleep(20); } catch (InterruptedException e) { e.printStackTrace(); } new Thread(() -> { atomicBoolean.set(true); }, "t2").start(); }
interrupt+isInterrupted
static volatile boolean isStop = false; public static void main(String[] args) { Thread t1 = new Thread(() -> { while (true) { if (Thread.currentThread().isInterrupted()) { System.out.println(Thread.currentThread().getName() + "\t isInterrupted()被修改为true,程序停止"); break; } System.out.println("t1 -----hello interrupt api"); } }, "t1"); t1.start(); System.out.println("-----t1的默认中断标志位:" + t1.isInterrupted()); //暂停毫秒 try { TimeUnit.MILLISECONDS.sleep(20); } catch (InterruptedException e) { e.printStackTrace(); } //t2向t1发出协商,将t1的中断标志位设为true希望t1停下来 new Thread(() -> { t1.interrupt(); }, "t2").start(); //t1.interrupt();,t1也可以自己给自己协商 }
等待唤醒
线程等待与唤醒的方式演进:
LockSupport是用来创建锁和其他同步类的基本线程阻塞原语。LockSupport类使用了一种名为Permit(许可)的概念来做到阻塞和唤醒线程的功能,每个线程都有一个许可(permit),permit只有两个值1和零,默认是零。可以把许可看成是一种(0,1)信号量(Semaphore),但与Semaphore不同的是,许可的累加上限是1
阻塞方法park:
①. permit默认是0,所以一开始调用park()方法,当前线程就会阻塞,直到别的线程将当前线程的permit设置为1时, park方法会被唤醒,然后会将permit再次设置为0并返回
②. static void park( ):底层是unsafe类native方法
唤醒方法unpark:
①. 调用unpark(thread)方法后,就会将thread线程的许可permit设置成1(注意多次调用unpark方法,不会累加,permit值上限是1)会自动唤醒thread线程,即之前阻塞中的LockSupport.park()方法失效
②. static void unpark( ):底层是unsafe类native方法
LockSupport它的解决的痛点:
①. LockSupport不用持有锁块,在代码书写方面不用加锁
②. 唤醒与阻塞的先后顺序,即使先调用唤醒再调用阻塞也不会导致程序卡死报异常,因为unpark获得了一个凭证,之后再调用park方法,就可以名正言顺的依据凭证消费
demo
public class LockSupportDemo { static int x = 0; static int y = 0; public static void main(String[] args) { Thread t1 = new Thread(() -> { try { TimeUnit.SECONDS.sleep(3); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println(Thread.currentThread().getName() + "\t ----come in" + System.currentTimeMillis()); LockSupport.park(); System.out.println(Thread.currentThread().getName() + "\t ----被唤醒" + System.currentTimeMillis()); }, "t1"); t1.start(); //暂停几秒钟线程 //try { TimeUnit.SECONDS.sleep(1); } catch (InterruptedException e) { e.printStackTrace(); } new Thread(() -> { LockSupport.unpark(t1); System.out.println(Thread.currentThread().getName() + "\t ----发出通知"); }, "t2").start(); } }
生产者与消费者
synchronized
public class ProductorAndConsumer { public static void main(String[] args) { Market market = new Market(); Productor productor = new Productor(market); Consumer consumer = new Consumer(market); new Thread(productor, "生产者A").start(); new Thread(consumer, "消费者B").start(); new Thread(productor, "生产者C").start(); new Thread(consumer, "消费者D").start(); } } //商店 class Market { //某件商品数量,最开始为0 private int product = 0; //进货方法,在多线程环境下,如果不加锁会产生线程安全问题,这里加synchronized锁 public synchronized void get() { //限定商店容量为10 while (product > 10) { System.out.println("仓库已满!"); //当仓库已满,需要停止生产 try { this.wait(); } catch (InterruptedException e) { e.printStackTrace(); } } System.out.println(Thread.currentThread().getName() + "进货成功!-->" + ++product); //当进货成功,就需要唤醒 this.notifyAll(); } //出售方法 public synchronized void sale() { while (product <= 0) { System.out.println("已售罄!"); //售罄之后需要停止去生产 try { this.wait(); } catch (InterruptedException e) { e.printStackTrace(); } } System.out.println(Thread.currentThread().getName() + "出售成功-->" + --product); //出售成功之后需要生产 this.notifyAll(); } } //生产者,生产者不可能只有一个,所以是多线程的 class Productor implements Runnable { private Market market; public Productor(Market market) { this.market = market; } @Override public void run() { //一次买15个 for (int i = 0; i < 15; i++) { market.get(); } } } //消费者 class Consumer implements Runnable { private Market market; public Consumer() { } public Consumer(Market market) { this.market = market; } @Override public void run() { //一次买10个 for (int i = 0; i < 10; i++) { market.sale(); } } }
Lock
/* * 使用Lock代替Synchronized来实现新版的生产者和消费者模式 ! * */ @SuppressWarnings("all") public class ThreadWaitNotifyDemo { public static void main(String[] args) { AirCondition airCondition = new AirCondition(); new Thread(() -> { for (int i = 0; i < 10; i++) airCondition.decrement(); }, "线程A").start(); new Thread(() -> { for (int i = 0; i < 10; i++) airCondition.increment(); }, "线程B").start(); new Thread(() -> { for (int i = 0; i < 10; i++) airCondition.decrement(); }, "线程C").start(); new Thread(() -> { for (int i = 0; i < 10; i++) airCondition.increment(); }, "线程D").start(); } } class AirCondition { private int number = 0; //定义Lock锁对象 final Lock lock = new ReentrantLock(); final Condition condition = lock.newCondition(); //生产者,如果number=0就 number++ public void increment() { lock.lock(); try { //1.判断 while (number != 0) { try { condition.await();//this.wait(); } catch (InterruptedException e) { e.printStackTrace(); } } //2.干活 number++; System.out.println(Thread.currentThread().getName() + ":\t" + number); //3.唤醒 condition.signalAll();//this.notifyAll(); } catch (Exception e) { e.printStackTrace(); } finally { lock.unlock(); } } //消费者,如果number=1,就 number-- public void decrement() { lock.lock(); try { //1.判断 while (number == 0) { try { condition.await();//this.wait(); } catch (InterruptedException e) { e.printStackTrace(); } } //2.干活 number--; System.out.println(Thread.currentThread().getName() + ":\t" + number); //3.唤醒 condition.signalAll();//this.notifyAll(); } catch (Exception e) { e.printStackTrace(); } finally { lock.unlock(); } } }
Lock带顺序的生产者与消费者
/* 多个线程之间按顺序调用,实现A->B->C 三个线程启动,要求如下: AA打印5次,BB打印10次,CC打印15次 接着 AA打印5次,BB打印10次,CC打印15次 ....来10轮 * */ public class ThreadOrderAccess { public static void main(String[] args) { ShareResource shareResource = new ShareResource(); new Thread(() -> { for (int i = 1; i <= 10; i++) shareResource.print5(); }, "线程A").start(); new Thread(() -> { for (int i = 1; i <= 10; i++) shareResource.print10(); }, "线程B").start(); new Thread(() -> { for (int i = 1; i <= 10; i++) shareResource.print15(); }, "线程C").start(); } } class ShareResource { //设置一个标识,如果是number=1,线程A执行... private int number = 1; Lock lock = new ReentrantLock(); Condition condition1 = lock.newCondition(); Condition condition2 = lock.newCondition(); Condition condition3 = lock.newCondition(); public void print5() { lock.lock(); try { //1.判断 while (number != 1) { condition1.await(); } //2.干活 for (int i = 1; i <= 5; i++) { System.out.println(Thread.currentThread().getName() + ":\t" + i); } //3.唤醒 number = 2; condition2.signal(); } catch (Exception e) { e.printStackTrace(); } finally { lock.unlock(); } } public void print10() { lock.lock(); try { //1.判断 while (number != 2) { condition2.await(); } //2.干活 for (int i = 1; i <= 10; i++) { System.out.println(Thread.currentThread().getName() + ":\t" + i); } //3.唤醒 number = 3; condition3.signal(); } catch (Exception e) { e.printStackTrace(); } finally { lock.unlock(); } } public void print15() { lock.lock(); try { //1.判断 while (number != 3) { condition3.await(); } //2.干活 for (int i = 1; i <= 15; i++) { System.out.println(Thread.currentThread().getName() + ":\t" + i); } //3.唤醒 number = 1; condition1.signal(); } catch (Exception e) { e.printStackTrace(); } finally { lock.unlock(); } } }