现代化 Android 开发:Jetpack Compose 最佳实践

简介: 如果一直关注 `Compose` 的发展的话,可以明显感受到 2022 年和 2023 年的 `Compose` 使用讨论的声音已经完全不一样了, 2022 年还多是观望,2023 年就有很多团队开始采纳 `Compose` 来进行开发了。不过也有很多同学接触了下 `Compose`,然后就放弃了。要么使用起来贼特么不顺手,要么就是感觉性能不行,卡。其实,问题只是大家的思维没有转换过来,还不会写 `Compose`。

本文为现代化 Android 开发系列文章第六篇。

完整目录为:

如果一直关注 Compose 的发展的话,可以明显感受到 2022 年和 2023 年的 Compose 使用讨论的声音已经完全不一样了, 2022 年还多是观望,2023 年就有很多团队开始采纳 Compose 来进行开发了。不过也有很多同学接触了下 Compose,然后就放弃了。要么使用起来贼特么不顺手,要么就是感觉性能不行,卡。其实,问题只是大家的思维没有转换过来,还不会写 Compose

为何要选择 Compose

很多 Android 开发都会问:View 已经这么成熟了,为何我要引入 Compose

历史也总是惊人的相似,React 横空出世时,很多前端同学也会问:jQuery 已经如此强大了,为何要引入 JSXVirtual DOM

争论总是无效的,时间会慢慢证明谁才会成为真正的主宰。

现在的前端同学,可能连 jQuery 是什么都不知道了。其作为曾经前端的主宰,何其强大,却也经受不住来自 React 的降维打击。回看这端历史,那我们选择 Compose 就显得很自然了。

另一个大趋势是 Kotlin 跨平台的逐渐兴起与成熟,也会推动 Compose 成为 Fultter 之外的选择,而且可以不用学习那除了写 Flutter 就完全没用的 Dart 语言。

但是,我也不推荐大家随随便便就把 Compose 接入的项目中。因为,国内的开发现状就是那样,迭代速度要求快,但是也要追求稳定。而接入 Compose 到使用 Compose 快速迭代,也是有一个痛苦的过程的,搞不好就要背锅,现在这环境,背锅可能就代表被裁了。

所以目前 Compose 依旧只能作为简历亮点而非必备点。可是如果你不学,万一被要求是必备点,那该怎么办?

所以即使你不喜欢 Compose 这一套,那为了饭碗,该掌握的还是得掌握,毕竟市场饱和,我们是被挑选的哪一方。

Compose 的思想

声明式 UI

Compose 的思想与 ReactViewFultterSwiftUI 都是一脉相传,那就是数据驱动 UI 与 声明式 UI。以前的 View 体系,我们称它为命令 UI

命令式 UI 是我们拿到 View 的句柄,然后通过执行命令,主动更新它的的颜色、文字等等

声明式 UI 则是我们构建一个状态机,描述各个状态下 UI 是个什么样子的。

那些写 Compose 怎么都不顺手的童鞋,就是总想拿 View 的句柄,但又拿不到,所以就很痛苦,但如果转换到状态机的思维上,去定义各种情景的状态,那写起来就非常舒服了。

ComposeView 体系进化的点就是它贴近于真实的 UI 世界。因为每个界面就是一个复杂的状态机,以往我们命令式的操作,我们依旧要定义一套状态系统,某种状态更新为某种 UI,有时候处理得不好,还会出现状态错乱的问题。 Compose 则强制我们要思考 UI 的状态机该是怎样子的。

Virtual DOM

Compose 的世界中,是没有介绍 Virtual DOM 这一概念的,但我觉得理解 Virtual DOM 能够帮助我们更好的理解 ComposeVirtual DOM 的诞生,一个原因是因为 DOM/View 节点实在是太重了,所以我们不能在数据变更时删除这个节点再重新创建,我们也不没有办法通过 diff 的方式去追踪到底发生了哪些变更。但大佬们的思维就比较活跃,因为开发过程中关注的一个 DOM/ View 的属性是很少的,所以就创造了一个轻量级的数据结构来表示一个 DOM/View 节点,由于数据结构比较轻量,那么销毁创建就可以随意点。每次更新状态,我可以用新状态去创造一个新的 Virtual DOM Tree, 然后与旧的 Virtual DOM Tree 进行 diff,然后将 diff 的结果更新到 DOM / View 上去, React Native 就是把前端的 DOM 变成移动端的 View,因而开启了 UI 跨平台动态化的大门。

那这和 Compose 有什么关系呢?我们可以认为,Compose 的函数让我们来生成 Virtual DOM 树,Compose 内部叫 SlotTable,框架用了全新的内部结构来代表 DOM 节点。每次我们状态的变更,就会触发 Composable 函数重新执行以生成新的 Virtual DOM,这个过程叫做 Recomposition

所以重点来了,发生状态更新后,框架会首先去重新生成 Virtual DOM 树,交给底层去比对变更,最终渲染输出。如果我们频繁的变更状态,那就会频繁的触发 Recomposition,如果每次还是重新生成一个巨大的 Virtual DOM 树,那框架内部的 diff 就会非常耗时,那么性能问题随之就来了,这是很多同学用 Compose 写出的代码卡顿的原因。

Compose 性能最佳实践

如果我们有了 Virtual DOM 这一层认识,那么就能够想到该怎样去保持 Compose 的高性能了,那就是

  1. 减少 Composable 函数自身的计算
  2. 减小状态变更的频次
  3. 减小状态变更的造成 Recomposition 的范围以减小 diff 更新量
  4. 减小 Recomposition 时的变更量以减小 diff 更新量

减少 Composable 函数自身的计算

这个很好理解,如果 Recomposition 发生了,那么整个函数就会重新执行,如果有复杂的计算逻辑,那就会造成函数本身的消耗很大,而解决措施也简单,就是通过 remember 缓存计算结果

@Composable
func Test(){
    val ret = remember(arg1, arg2) { // 通过参数判断是否要重新计算
        // 复杂的计算逻辑
    }
}

减少状态变更的频次

这个主要是减少无效的状态变更,如果有多个状态,其每个状态下的执行结果是一样的,那这些状态间的变更就没有意义了,应该统一成唯一的状态。

其实官方在 mutableStateOf 的入参 policy 上已经定制了几种判断状态值是否变更的策略:

  • StructuralEqualityPolicy: 通过值判等(==)的来看其是否发生变更
  • ReferentialEqualityPolicy: 必须是同一个对象(===)才算未发生变更
  • NeverEqualPolicy : 总是触发状态变更

默认为 StructuralEqualityPolicy,也符合一般情况的要求。

除此之外,我们减小状态变更频率的手段就是 derivedStateOf。 它的用途主要是我们就是将多个状态值收归为统一的状态值, 例如:

  1. 列表是否滚动到了顶部,我们拿到的 scorllY 是很频繁变更的值,但我们关注的只是 scorllY == 0
  2. 根据内容为空判定发送按钮是否可点击,我们关注的是 input.isNotBlank()
  3. 多个输入的联合校验
  4. ...

我们以发送按钮为例:

@Composable
func Test(){
    val input = remember {
        mutabtleStateOf('')
    }
    val canSend = remember {
        derivedStateOf { input.value.isNotBlank() }
    }

    // 使用 canSend
    SendButton(canSend)
    // 其它很多代码
}

这样子,我们可以多次更新 input 的值,但是只有当 canSend 发生变更时才会触发 TestRecomposition

减小状态变更的造成 Recomposition 的范围

Recomposition 是以函数为作用范围的,所以某个状态触发了 Recomposition,那么这个函数就会重新执行一次。但需要注意的是,不是状态定义的函数执行Recomposition,而是状态读取的函数会触发 Recomposition

还是以上面的输入的例子为例。 如果我在 Test 函数执行期内读取了 input.value, 那么 input 变更时就会触发 Test 函数的重组。注意的是函数执行期内读取,而不是函数代码里写了 input.value。上面 canSendderivedStateOf 虽然也有调用 input.value,但因为它是以 lambda 的形式存在,不是会在执行 Test 函数时就执行,所以不会因为 input.value 变更就造成 TestRecomposition

但如果我在函数体内使用 input.value,例如:

@Composable
func Test(){
    val input = remember {
        mutabtleStateOf('')
    }
    val canSend = remember {
        derivedStateOf { input.value.isNotBlank() }
    }
    Text(input.value)
    SendButton(canSend)
    OtherCode(arg1, arg2)
    OtherCode1(arg1, arg2)
}

那就会因为 input 的变更而造成 Test 的重组, canSend 使用 derivedStateOf 也就是做无用功了。更严重的是可能有很多其它与 input 无关的代码也会再次执行。

所以我们需要把状态变更触发 Recomposition 的代码用一个子组件来承载:

@Composable
func InputText(input: () -> String){
    Text(input())
}

@Composable
func Test(){
    val input = remember {
        mutabtleStateOf('')
    }
    val canSend = remember {
        derivedStateOf { input.value.isNotBlank() }
    }
    InputText {
        input.value
    }
    SendButton(canSend)
    OtherCode(arg1, arg2)
    OtherCode1(arg1, arg2)
}

我们重新创建了一个 InputText 函数,然后通过 lambda 的形式传递 input,因而现在 input 变更造成的 Recomposition 就局限于 InputText 了,而其它的无关代码就不会被执行,这样范围就大大缩减了。

减小 Recomposition 时的变更量

加入我们的函数 Recomposition 的范围已经没办法缩减了,例如上面 canSend 变更触发 TestRecomposition,这造成 OtherCode 组件的重新执行好像无法避免了。其实官方也想到了这种情况,所以它框架还会判断 OtherCode 的参数是否发生了变更,依此来判断 OtherCode 函数是否需要重新执行。如果参数没有变更,那么就可以开心的跳过它,那么 Recomposition 的变更量就大幅减小了。

那么怎么判断参数没有发生变更呢?如果是基础类型和data class 等的数据结果还好,可以通过值判等的形式看其是否变更。但如果是列表或者自定义的数据结构就麻烦了。 因为框架无法知道其内部是否发生了变更。

a: List<T> 为例,虽然重组时我拿到的是同一个对象 a, 但其实现类可能是 ArraryList<T>, 并且可能调用 add/remove 等方法变更了数据结构。所以在保证正确性优先的情况下,框架只得重新调用整个函数。

@Composable
fun SubTest(a: List<String>){
    //...
}

@Composable
fun Test(){
    val input = remember {
        mutabtleStateOf('')
    }
    val a = remember {
        mutableStateOf(ArrayList<String>())
    }
    // 因为读取了 input.value, 所以每次 input 变更,都会早成 Test 的 Recomposition
    Test(input.value)
    // 而因为 a 是个 List,所以每次 SubTest 也会执行 Recomposition
    SubTest(a)
}

那要怎么规避这个问题呢? 那就是使用 kotlinx-collections-immutable 提供的 ImmutableList 等数据结构,如此就可以帮助框架正确的判断数据是否发生了变更。

@Composable
fun SubTest(a: PersistentList<String>){
    //...
}

@Composable
fun Test(){
    val input = remember {
        mutabtleStateOf('')
    }
    val a = remember {
        mutableStateOf(persistentListOf<String>())
    }
    // 因为读取了 input.value, 所以每次 input 变更,都会早成 Test 的 Recomposition
    Test(input.value)
    // 而因为 a 是个 List,所以每次 SubTest 也会执行 Recomposition
    SubTest(a)
}

而如果是我们自己定义的数据结构,如果是非 data class,那就要我们主动加上 @Stable 注解,告诉框架这个数据结构是不会发生变更,或者其变更我们都会用状态机去处理的。特别需要注意的是使用 java 作为实体类而给 compose 使用的情况,那就是非常不友好了。

对于列表而言,我们往往需要用 for 循环或者 LazyColumn 之类的方式使用:

@Composable
fun SubTest(list: PersistentList<ItemData>){
    for(item in list){
        Item(item)
    }
}

这个写法,如果 list 不会变更,那也没什么问题,可是如果列表发生了变更,例如原本是 12345, 我删了一项变成 1345

那么在 Recomposition 的时候,框架在比对变更时,发现从第二项开始就全不同了,那么剩下的 Item 就得全部重新重组一次了,这也是非常耗费性能的,所以框架提供了 key 的功能,通过它,框架可以检测列表的 Item 移动的情况。

@Composable
fun SubTest(list: PersistentList<ItemData>){
    for(item in list){
        key(item.id){
            Item(item)
        } 
    }
}

不过需要注意的是 key 需要具有唯一性。 LazyColumnitem 也有 key 的功能,其作用类似,其还有 contentType 的传参,其作用和 RecyclerView 的多 itemType 类似,也是一个可以使用的优化措施。

最后

Compose 业务上能做的优化大体上就是这些了。总之我们就是我们要保持组件的颗粒度尽可能的小,容易变动的要独立出来,非常稳定的也要独立出来,尽量使用 Immutable 的数据结构。 如此之后, Compose 的流畅度还是非常不错的。

如果还觉得卡,那多半是因为你使用的是 Debug 包,Compose 会在 Debug 包加很多调试信息,会很影响其流畅度的。切换到 Release 包,可能丝滑感就出来了。

目录
相关文章
|
8天前
|
消息中间件 网络协议 Java
Android 开发中实现数据传递:广播和Handler
Android 开发中实现数据传递:广播和Handler
13 1
|
9天前
|
Linux 编译器 Android开发
FFmpeg开发笔记(九)Linux交叉编译Android的x265库
在Linux环境下,本文指导如何交叉编译x265的so库以适应Android。首先,需安装cmake和下载android-ndk-r21e。接着,下载x265源码,修改crosscompile.cmake的编译器设置。配置x265源码,使用指定的NDK路径,并在配置界面修改相关选项。随后,修改编译规则,编译并安装x265,调整pc描述文件并更新PKG_CONFIG_PATH。最后,修改FFmpeg配置脚本启用x265支持,编译安装FFmpeg,将生成的so文件导入Android工程,调整gradle配置以确保顺利运行。
32 1
FFmpeg开发笔记(九)Linux交叉编译Android的x265库
|
10天前
|
存储 设计模式 数据库
构建高效的安卓应用:探究Android Jetpack架构组件
【4月更文挑战第20天】 在移动开发的世界中,构建一个既高效又可维护的安卓应用是每个开发者追求的目标。随着Android Jetpack的推出,Google为开发者提供了一套高质量的库、工具和指南,以简化应用程序开发流程。本文将深入探讨Jetpack的核心组件之一——架构组件,并展示如何将其应用于实际项目中,以提升应用的响应性和稳定性。我们将通过分析这些组件的设计原则,以及它们如何协同工作,来揭示它们对于构建现代化安卓应用的重要性。
|
10天前
|
存储 移动开发 数据库
构建高效Android应用:探究LiveData和ViewModel的最佳实践
【4月更文挑战第20天】 在动态演化的移动开发领域,构建一个既响应迅速又能够在用户界面保持稳定的Android应用是至关重要的。近年来,随着Android架构组件的推出,特别是LiveData和ViewModel的引入,开发者得以更有效地管理应用状态并优化用户界面的响应性。本文将深入探讨LiveData和ViewModel的实现机制,并通过案例分析展示如何结合它们来构建一个高效且健壮的Android应用架构。我们将重点讨论如何通过这些组件简化数据绑定过程、提高代码的可维护性和测试性,同时确保用户界面的流畅性。
|
10天前
|
Unix Linux Shell
FFmpeg开发笔记(八)Linux交叉编译Android的FFmpeg库
在Linux环境下交叉编译Android所需的FFmpeg so库,首先下载`android-ndk-r21e`,然后解压。接着,上传FFmpeg及相关库(如x264、freetype、lame)源码,修改相关sh文件,将`SYSTEM=windows-x86_64`改为`SYSTEM=linux-x86_64`并删除回车符。对x264的configure文件进行修改,然后编译x264。同样编译其他第三方库。设置环境变量`PKG_CONFIG_PATH`,最后在FFmpeg源码目录执行配置、编译和安装命令,生成的so文件复制到App工程指定目录。
43 9
FFmpeg开发笔记(八)Linux交叉编译Android的FFmpeg库
|
1天前
|
机器学习/深度学习 安全 数据处理
构建未来:基于Android的智能家居控制系统开发
【4月更文挑战第29天】 随着物联网技术的蓬勃发展,智能家居已成为现代技术革新的重要领域。本文将深入探讨基于Android平台的智能家居控制系统的设计和实现,旨在提供一种用户友好、高度集成且功能丰富的解决方案。通过利用Android设备的广泛普及和其强大的处理能力,结合最新的无线通讯技术和人工智能算法,我们旨在打造一个可靠、易用且具有高度可定制性的智能家居控制环境。文中不仅详细阐述了系统架构、关键技术选型以及界面设计,还对可能遇到的安全挑战进行了分析,并提出了相应的解决策略。
|
1天前
|
监控 Java Android开发
安卓应用开发:打造高效用户界面的五大策略
【4月更文挑战第29天】 在安卓应用开发的世界中,构建一个既美观又高效的用户界面(UI)对于吸引和保留用户至关重要。本文将深入探讨五种策略,这些策略可以帮助开发者优化安卓应用的UI性能。我们将从布局优化讲起,逐步过渡到绘制优化、内存管理、异步处理以及最终的用户交互细节调整。通过这些实践技巧,你将能够为用户提供流畅而直观的体验,确保你的应用在竞争激烈的市场中脱颖而出。
|
2天前
|
存储 数据库 Android开发
构建高效Android应用:采用Kotlin与Jetpack的实践指南
【4月更文挑战第29天】 在现代移动开发领域,构建一个既高效又稳定的Android应用对于开发者来说是一个持续的挑战。随着技术的不断进步和用户需求的日益增长,传统的开发方法已不足以满足市场的要求。本文将深入探讨如何结合Kotlin编程语言以及Android Jetpack组件,来提升Android应用的性能、稳定性及开发效率。通过分析Kotlin的优势、介绍Jetpack的核心组件,并结合实际案例,我们将展示如何在实际项目中应用这些技术,以期达到优化应用架构、提高代码质量和加快开发流程的目的。
8 1
|
3天前
|
机器学习/深度学习 搜索推荐 Android开发
【专栏】安卓应用开发:构建高效用户界面的实用指南
【4月更文挑战第27天】本文介绍了构建高效安卓用户界面的指南,分为设计原则和技巧两部分。设计原则包括一致性、简洁性和可访问性,强调遵循安卓系统规范,保持界面简洁,考虑不同用户需求。技巧方面,建议合理布局、优化图标和图片、运用动画效果、提供个性化设置及优化性能。随着技术发展,未来安卓应用开发将融合更多智能化和个性化元素,开发者需持续学习新技术,提升用户体验。
|
6天前
|
数据库 Android开发 开发者
安卓应用开发:构建高效用户界面的策略
【4月更文挑战第24天】 在竞争激烈的移动应用市场中,一个流畅且响应迅速的用户界面(UI)是吸引和保留用户的关键。针对安卓平台,开发者面临着多样化的设备和系统版本,这增加了构建高效UI的复杂性。本文将深入分析安卓平台上构建高效用户界面的最佳实践,包括布局优化、资源管理和绘制性能的考量,旨在为开发者提供实用的技术指南,帮助他们创建更流畅的用户体验。