AI孙燕姿 ?AI东雪莲 !—— 本地部署DDSP-SVC一键包,智能音频切片,本地训练,模型推理,为你喜欢的角色训练AI语音模型小教程

简介: AI孙燕姿 ?AI东雪莲 !—— 本地部署DDSP-SVC一键包,智能音频切片,本地训练,模型推理,为你喜欢的角色训练AI语音模型小教程

感谢B站UP羽毛布团

演示视频

稻香——东雪莲

image.png

稻香——冬雪莲

虚拟——东雪莲

image.png

虚拟——冬雪莲

反方向的钟——东雪莲

image.png

反方向的钟——冬雪莲

晴天+龙卷风——东雪莲

image.png

晴天+龙卷风——冬雪莲

ZOOD——东雪莲

image.png

ZOOD-----东雪莲

DDSP-SVC 3.0 (D3SP) 是什么?

DDSP-SVC 是一个相对年轻的音声转换项目,相较于常用的So-VITS和更早的Diff-SVC,DDSP在训练推理速度和配置要求上都可以说是全面优于前两个项目,一般来说只要有一张2G以上显存的N卡,花上一两个小时就可以训练完成,大大降低了AI变声的门槛。当然,带来的牺牲就是其原本的转换效果是不太尽人意的。

但是最近DDSP项目迭代到了3.0版本,在原有的基础上加入了浅扩散机制,将DDSP输出的质量较低的音频梅尔谱图输入扩散模型进行浅扩散处理,输出梅尔谱图并通过声码器转换为高质量音频,使得转换效果大幅提升,在部分数据集上可以达到媲美So-VITS的效果。因此DDSP-SVC 3.0也可以称为D3SP(DDSP with Diffusion, DDDSP, 带带大涩批)。DDSP-SVC 是一个相对年轻的音声转换项目,相较于常用的So-VITS和更早的Diff-SVC,DDSP在训练推理速度和配置要求上都可以说是全面优于前两个项目,一般来说只要有一张2G以上显存的N卡,花上一两个小时就可以训练完成,大大降低了AI变声的门槛。当然,带来的牺牲就是其原本的转换效果是不太尽人意的。

但是最近DDSP项目迭代到了3.0版本,在原有的基础上加入了浅扩散机制,将DDSP输出的质量较低的音频梅尔谱图输入扩散模型进行浅扩散处理,输出梅尔谱图并通过声码器转换为高质量音频,使得转换效果大幅提升,在部分数据集上可以达到媲美So-VITS的效果。因此DDSP-SVC 3.0也可以称为D3SP(DDSP with Diffusion, DDDSP, 带带大涩批)。

下载资源:

提取码:g8n4

解压整合包

将整合包解压到电脑硬盘中(路径中尽量不要包含中文),整合包内已经搭建好了运行所需的所有环境依赖,你无需自己手动搭建环境。

准备数据集

转化数据格式为wav

用uvr5获得原声,去除杂音和背景音效

智能音频切片

音频长度时间最好在30~60min左右

数据集准备

将切片后的数据集放置在data/train/audio文件夹下,在数据集中按训练集:验证集=100:1的比例挑选验证集音频放置到data/val/audio文件夹中

单说话人模型,直接将所有wav文件放置到对应的audio文件夹下即可。如果是训练多说话人模型,需要在训练集和验证集的"audio"文件夹下新建不同说话人的目录,只能以纯数字命名,以1开始

如果你不想手动挑选验证集,在数据集放置到data/train/audio后也可以点击下面的一键划分数据集完成操作。

验证集的条数最好不要超过10条,否则训练验证会变得很慢。验证集的音频质量越高越好。

确认训练集和验证集正确放置后请选择训练编码器和f0提取算法

编码器:hubertsoft: 咬字较为清晰 | contentvec(768l12): 音色更为还原

f0算法:crepe: 抗噪能力较强但预处理速度慢 | parselmouth: 抗噪能力较弱但预处理速度快

注意,不同编码器训练出来的模型不通用,并且对应不同的配置文件,在推理时选择不匹配的配置文件会导致错误

填写训练设置和超参数

D3SP的完整推理过程需要训练2个模型,分别是DDSP模型和扩散模型。因此你需要在下面设置2份配置文件的超参数。

开始训练

D3SP的完整推理过程需要训练2个模型

首先选择训练进度,从头开始训练将会将exp文件夹中的对应模型进度保存备份至models_backup文件夹,如果是训练扩散模型,会自动装载对应编码器的预训练底模。

两个模型的训练是独立的,你可以以任意顺序训练两个模型。训练前请先在上方选择预处理对应的编码器。

推理模型

相关文章
|
人工智能 自然语言处理 Devops
云效 AI 智能代码评审体验指南
云效AI智能代码评审正式上线!在合并请求时自动分析代码,精准识别问题,提升交付效率与质量。支持自定义规则、多语言评审,助力研发效能升级。立即体验AI驱动的代码评审革新,让AI成为你的代码质量伙伴!
427 7
|
3月前
|
人工智能 自然语言处理 算法
【2025云栖大会】AI 搜索智能探索:揭秘如何让搜索“有大脑”
2025云栖大会上,阿里云高级技术专家徐光伟在云栖大会揭秘 Agentic Search 技术,涵盖低维向量模型、多模态检索、NL2SQL及DeepSearch/Research智能体系统。未来,“AI搜索已从‘信息匹配’迈向‘智能决策’,阿里云将持续通过技术创新与产品化能力,为企业构建下一代智能信息获取系统。”
511 9
|
3月前
|
人工智能 搜索推荐 程序员
当AI学会“跨界思考”:多模态模型如何重塑人工智能
当AI学会“跨界思考”:多模态模型如何重塑人工智能
362 120
|
3月前
|
机器学习/深度学习 人工智能 算法
用于实验室智能识别的目标检测数据集(2500张图片已划分、已标注) | AI训练适用于目标检测任务
本数据集包含2500张已标注实验室设备图片,涵盖空调、灭火器、显示器等10类常见设备,适用于YOLO等目标检测模型训练。数据多样、标注规范,支持智能巡检、设备管理与科研教学,助力AI赋能智慧实验室建设。
用于实验室智能识别的目标检测数据集(2500张图片已划分、已标注) | AI训练适用于目标检测任务
|
3月前
|
机器学习/深度学习 人工智能 算法
阿里云视频云以 360° 实时回放技术支撑 NBA 2025 中国赛 —— AI 开启“智能观赛”新体验
NBA中国与阿里云达成合作,首发360°实时回放技术,融合AI视觉引擎,实现多视角、低延时、沉浸式观赛新体验,重新定义体育赛事观看方式。
645 0
阿里云视频云以 360° 实时回放技术支撑 NBA 2025 中国赛 —— AI 开启“智能观赛”新体验