01背包问题及一维数组的优化

简介: 01背包问题及一维数组的优化

01背包问题!只有小白才懂小白



01背包问题,是指每个物品只能用一次,求背包中的最大价值

我们该如何思考这些问题呢?


首先,我们能直接依次取最大价值的物品放进去吗?这是一种贪心的思想,肯定是行不通的。我们应该把每个物品逐个加进来.讨论里面的规律是什么。

假设背包的容量是c,第i个物品的价值是w[i],它的体积是v[i]对于第i个物品,如果v[i]>c,第i个物品是放不进去的,所以它的最大价值是i-1件物品讨论时的最大价值;如果v[i] <= c,第i个物品能放进去,但是我们要不要把它装进我们的背包呢?如果装进背包,最大价值就是w[i] + (i-1件物品,背包容量为c - v[i]情况下的最大值) , 如果不装进去,最大价值就是i-1件物品讨论时的最大价值。


现在,我们用数组把上述文字表示一下
f[i][j] 表示的是第i件物品 , 容量为j时的最大价值
 Ⅰ.w [i] > c时 ,f[i][j] = f[i-1][j];
 Ⅱ.w[i] < c时
  ①放第i个物品 f [i][j] = w[i] + f [i-1][j-v[i]]
  ②不放第i个物品 f[i][j] = f[i-1][j]; 
 所以状态方程为f[i][j] = max(f[i-1][j],f[i-1][j-v[i]])
//二维模板
for(int i = 1 ;i <= n ;i ++){
  for(int j = 0 ;j <= m ;j ++)
  {
    f[i][j] = f[i-1][j];//放不下的情况
    if(j >= v[i]) f[i][j] = max(f[i][j],f[i-1][j-v[i]] + w[i]);
  }
}

根据状态转移方程,我们可以发现在f[i]这一层,只用到了f[i-1]这层,且状态转移方程中的 j, j-v[i]都是小于等于j的,并不是分布在j的两端,根据这两个特性,我们可以将二维优化成为一维。


如果我们直接将i这维删去的话,就会变成

for(int i = 1 ;i <= n ;i ++)
  for(int j = 0 ;j <= m ;j ++)
  {
    f[j] = f[j];
    if(j >= v[i]) f[j] = max(f[j],f[j-v[i]] + w[i]);
  }


f[j] = f[j]; //这个恒成立,直接可以删去

因为if的判断条件是j >= v[i],所有(0,v[i])范围的数没有意义

for循环中可以直接从j = v[i]开始

所以,我们接着可以修改为


for(int i = 1 ;i <= n ;i ++)
  for(int j = v[i] ;j <= c ;j ++)
  {
    f[j] = max(f[j],f[j-v[i]] + w[i]);
  }

那么f [ j ] = max(f [ j ],f [ j - v [ i ] ] + w [ i ] )就等价于f [ i ] [ j ] = max( f [ i - 1 ] [ j ] , f [ i - 1 ] [ j - v [ i ] ] ) 吗?

j从前往后模拟真的可行吗?


仔细想想,不难发现

假设当我们更新第i层状态的时候,f[j] = max(f[j],f[j-v[i]] + w[i]),当我们需要用到f[j-v[i]]时,因为j - v[i]是小于j的,所以j - v[i]的状态在j之前更新过了


f[j - v[i]]相当于是第i层中j - v[i]的值,即f[i][j - v[i]],而状态转移方程中我们需要的是第i-1层中f[j - v[i]],所以我们应该从后往前模拟,j > j - v[i],所以j就会再j - v[i]之前更新,用到的j - v[i]的值还是第 i - 1层中的值


//一维模板
for(int i = 1; i <= n; i++)
{
    for(int j = c; j >= v[i]; j--)  
        f[j] = max(f[j], f[j - v[i]] + w[i]);
} 

讲了这么多,你可能还是有点糊涂,那么我们直接上个例子吧


例题


有 N 件物品和一个容量是 V 的背包。每件物品只能使用一次。

第 i 件物品的体积是 vi,价值是 wi。


求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。

输出最大价值。


输入格式


第一行两个整数,N,V,用空格隔开,分别表示物品数量和背包容积。

接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 件物品的体积和价值。


输出格式


输出一个整数,表示最大价值。


数据范围

0 < N , V ≤ 1000

0 < vi ,wi ≤ 1000

输入样例

4 5

1 2

2 4

3 4

4 5


输出样例:

8


f5bf502a1f4243ca837e4ba345b2455b.png


二维数组


解释一下这个表格怎么来的,横着的12345代表背包容量为j时的情况,竖着的abcd则是i个物品

模拟一下(c,3)点,即f[3][3],第三个物品背包容量为3时的情况,f[3][3] = max(f[2][3],f[2][0]+4) = max(6,4) = 6

905127605b1c47698a206cf4fa72cc72.png

一维数组

当我们计算f[2]时,f[2] = max(f[2],f[2-2] + 4) = 4,相当于取了一次b物品

当我们算f[4]时,又要用到f[2],f[4] = max(f[4],f[4-2]+4) = max(2,4+4) = 8

我们在算f[2]中取了一次第二件物品,f[4]时又取了一次第二件物品,相当于在算f[4]时取了两次b物品,不符合01背包,所以我们应该从后往前模拟。顺带提一句,多重背包不计较物品取出的次数,这也可以解释多重背包为什么可以从前往后模拟。


代码


#include <iostream>
#include <algorithm>
using namespace std;
const int N = 1010;
int n, m;
int v[N], w[N];
int f[N];
int main()
{
    cin >> n >> m;
    for (int i = 1; i <= n; i ++ ) cin >> v[i] >> w[i];
    for (int i = 1; i <= n; i ++ )
        for (int j = m; j >= v[i]; j -- )
            f[j] = max(f[j], f[j - v[i]] + w[i]);
    cout << f[m] << endl;
    return 0;

才学dp,也是第一次写复杂点的博客,有问题的话还请大家指出!

目录
相关文章
|
7月前
|
算法 测试技术 C#
二分查找:LeetCode2035:将数组分成两个数组并最小化数组和的差
二分查找:LeetCode2035:将数组分成两个数组并最小化数组和的差
|
5月前
|
算法 搜索推荐 Java
解析01背包问题及其在动态规划中的应用
解析01背包问题及其在动态规划中的应用
|
6月前
|
存储 JavaScript 算法
【背包问题】01背包问题和完全背包问题的模板
【背包问题】01背包问题和完全背包问题的模板
|
7月前
|
算法 测试技术 C++
【线段树】【众数】1157数组中占绝大多数的元素
【线段树】【众数】1157数组中占绝大多数的元素
【线段树】【众数】1157数组中占绝大多数的元素
|
7月前
|
算法 测试技术 C#
【动态规划】【数论】【区间合并】3041. 修改数组后最大化数组中的连续元素数目
【动态规划】【数论】【区间合并】3041. 修改数组后最大化数组中的连续元素数目
C#基础⑥.2——数组(冒泡排序、求最值、数组排序、forr反转)
一次语文测试后,老师让班长统计每一个学生的成绩并计算全班(全班共5人)的平均成绩,然后把所有成绩显示出来。
|
7月前
|
存储 算法 Java
【算法训练-数组 二】【元素组合】两数之和、三数之和
【算法训练-数组 二】【元素组合】两数之和、三数之和
55 0
|
人工智能 算法 C++
C++ 二分查找算法:山脉数组中查找目标值
C++ 二分查找算法:山脉数组中查找目标值
|
人工智能 算法 决策智能
动态规划之背包问题(01背包问题、完全背包问题、方案数填满型背包问题)
动态规划之背包问题(01背包问题、完全背包问题、方案数填满型背包问题)
268 1
|
存储 算法 编译器
学C的第十二天【深入了解数组:一维和二维数组的创建和初始化;一维和二维数组的使用;一维和二维数组在内存中的存储;数组越界;数组作为函数参数;冒泡排序(对数组名的理解)】-2
5.二维数组的使用 操作符 [ ] :下标引用操作符,它其实就是数组访问的操作符,使用两个[ ],访问行和列 二维数组的行和列都是从0开始的