Keil自带的操作系统RTX内核---内存管理分析

简介: Keil自带的操作系统RTX内核---内存管理分析

Keil RTX 是免版税的确定性实时操作系统,适用于 ARM 和 Cortex-M 设备。使用该系统可以创建同时执行多个功能的程序,并有助于创建结构更好且维护更加轻松的应用程序。关于Keil  RTX就不多说了,使用KEil软件作为开发的用到RTX的不少吧。


     RTX系统配合KeilMDK软件使用起来还是比较简单的,开发也很方便。RTX系统中的各个模块都是比较独立的,这点很方便学习。其中的内存管理部分在rt_MemBox.c函数中。RTX的动态内存管理,其实就是事先分配了一个全局变量的大数组,只不过把这部分连续内存用指针链表的形式加以灵活管理。可以把RTX这部分内存管理代码摘出来单独为以后自己的应用使用。


看一下代码中的宏两个宏


/* Memory pool for TCB allocation    */
_declare_box (mp_tcb, OS_TCB_SIZE, OS_TASKCNT);
U16 const mp_tcb_size = sizeof(mp_tcb);
/* Memory pool for System stack allocation (+ os_idle_demon). */
_declare_box8 (mp_stk, OS_STKSIZE*4, OS_TASKCNT-OS_PRIVCNT+1);


其中的任务控制块mp_tcb和堆栈mp_stk都用到了动态内存管理。因为这样管理起来很方便,比如创建任务和删除任务,要是用数组的话,你必须知道现在处于哪个索引位置,添加任务和删除任务时又处于数组的哪个索引位置。有这种链表的方式,就无需关心这些。


找到这个宏的定义出,就看到了它的真面目,分配了一个大数组,叫它内存池吧。


#define BOX_ALIGN_8                   0x80000000
#define _declare_box(pool,size,cnt)   U32 pool[(((size)+3)/4)*(cnt) + 3]
#define _declare_box8(pool,size,cnt)  U64 pool[(((size)+7)/8)*(cnt) + 2]
#define _init_box8(pool,size,bsize)   _init_box (pool,size,(bsize) | BOX_ALIGN_8)
/* Variables */
extern U32 mp_tcb[];
extern U64 mp_stk[];
extern U32 os_fifo[];
extern void *os_active_TCB[];


至于#define BOX_ALIGN_8                   0x80000000,这涉及到对齐,


对齐难免造成内存资源浪费,但是也给操作增加了方便,至少访问不会出错吧。


mp_tcb和mp_stk定义了数组的地址,和*mp_tcb差不多吧,但是两者却是有区别的,数组名不等于指针,举个简单例子说,指针变量可以任意给其赋值,但是数组名,能给它赋一个另一个地址吗?数组名指向的地址是确定的。指针是一个变量,变量的值是另外一个变量的地址。那么,既然指针是变量,那么指针必然有自己的存储空间,只不过是该存储空间内的值是一个地址值,而不是别的内容。定义指针是要占一个空间的,因为它是个变量,定义成mp_tcb[]实际是不占空间的。数组名只是一个符号。它们取指运算的效果相同但是不是相等。可以把数组名看做常量指针吧,只是看做但并不是。


使用RTX的内存管理模块之前,先是要定义一个大数组分配内存池,然后就是初始化了。把各个小分区链接起来。


看一下链接用的链表结构:


typedef struct OS_BM {
  void *free;                     /* Pointer to first free memory block      */
  void *end;                      /* Pointer to memory block end             */
  U32  blk_size;                  /* Memory block size                       */
} *P_BM;
就是这么个双向链表,把小块的内存链接起来,共用一个内存池。
/*--------------------------- _init_box -------------------------------------*/
int  _init_box  (void *box_mem, U32 box_size, U32 blk_size) 
{
  /* Initialize memory block system, returns 0 if OK, 1 if fails. */
  void *end;
  void *blk;
  void *next;
  U32  sizeof_bm;
  /* Create memory structure. */
  if (blk_size & BOX_ALIGN_8) {
    /* Memory blocks 8-byte aligned. */ 
    blk_size = ((blk_size & ~BOX_ALIGN_8) + 7) & ~7;
    sizeof_bm = (sizeof (struct OS_BM) + 7) & ~7;
  }
  else {
    /* Memory blocks 4-byte aligned. */
    blk_size = (blk_size + 3) & ~3;
    sizeof_bm = sizeof (struct OS_BM);
  }
  if (blk_size == 0) {
    return (1);
  }
  if ((blk_size + sizeof_bm) > box_size) {
    return (1);
  }
  /* Create a Memory structure. */
  blk = ((U8 *) box_mem) + sizeof_bm;
  ((P_BM) box_mem)->free = blk;
  end = ((U8 *) box_mem) + box_size;
  ((P_BM) box_mem)->end      = end;
  ((P_BM) box_mem)->blk_size = blk_size;
  /* Link all free blocks using offsets. */
  end = ((U8 *) end) - blk_size;
  while (1)  {
    next = ((U8 *) blk) + blk_size;
    if (next > end)  break;
    *((void **)blk) = next;
    blk = next;
  }
  /* end marker */
  *((void **)blk) = 0;
  return (0);
}


至于函数中的(blk_size + 3) & ~3;是做什么用的,看注释就知道了,对齐用的。可以把这个代码摘出来调试一下,确实是这样,不管你定义的任务控制快是多大,是否是4字节的倍数,通过(blk_size + 3) & ~3;,最终的大小肯定是4的倍数。


看下这个调用:


rt_init_box (&mp_tcb, mp_tcb_size, sizeof(struct OS_TCB));
U16 const mp_tcb_size = sizeof(mp_tcb);


OS_TCB是任务控制块的结构体,他的大小并不一定是4的倍数,但是经过(blk_size + 3) & ~3;最终每个分配的大小都是4的倍数。


mp_tcb_size肯定也是4的倍数,因为sizeof(mp_tcb)取出来的大小是结构体自动内存对齐过的。


接下来就是内存分配的,其实就是链表的插入与删除操作罢了。


/*--------------------------- rt_alloc_box ----------------------------------*/
void *rt_alloc_box (void *box_mem) {
  /* Allocate a memory block and return start address. */
  void **free;
  int  irq_dis;
  irq_dis = __disable_irq ();
  free = ((P_BM) box_mem)->free;
  if (free) {
    ((P_BM) box_mem)->free = *free;
  }
  if (!irq_dis) __enable_irq ();
  return (free);
}
/*--------------------------- _calloc_box -----------------------------------*/
void *_calloc_box (void *box_mem)  {
  /* Allocate a 0-initialized memory block and return start address. */
  void *free;
  U32 *p;
  U32 i;
  free = _alloc_box (box_mem);
  if (free)  {
    p = free;
    for (i = ((P_BM) box_mem)->blk_size; i; i -= 4)  {
      *p = 0;
      p++;
    }
  }
  return (free);
}
/*--------------------------- rt_free_box -----------------------------------*/
int rt_free_box (void *box_mem, void *box) {
  /* Free a memory block, returns 0 if OK, 1 if box does not belong to box_mem */
  int irq_dis;
  if (box < box_mem || box > ((P_BM) box_mem)->end) {
    return (1);
  }
  irq_dis = __disable_irq ();
  *((void **)box) = ((P_BM) box_mem)->free;
  ((P_BM) box_mem)->free = box;
  if (!irq_dis) __enable_irq ();
  return (0);
}


Keil的RTX内核关于内存管理的就这些了,很少很独立吧。比较简单,这块可以单独摘出来为自己学习和使用。


包括Linux源码中的双向循环链表,也是很经典很不错的,实际上都可以单独摘出来,,说不定哪天的项目中就可以用上了。


相关实践学习
CentOS 7迁移Anolis OS 7
龙蜥操作系统Anolis OS的体验。Anolis OS 7生态上和依赖管理上保持跟CentOS 7.x兼容,一键式迁移脚本centos2anolis.py。本文为您介绍如何通过AOMS迁移工具实现CentOS 7.x到Anolis OS 7的迁移。
相关文章
|
13天前
|
SQL 网络安全 数据库
GBase 8a集群V8客户端gccli适配欧拉操作系统绕行方案分析
GBase 8a集群V8客户端gccli适配欧拉操作系统绕行方案分析
|
20天前
|
C语言 开发者 内存技术
探索操作系统核心:从进程管理到内存分配
本文将深入探讨操作系统的两大核心功能——进程管理和内存分配。通过直观的代码示例,我们将了解如何在操作系统中实现这些基本功能,以及它们如何影响系统性能和稳定性。文章旨在为读者提供一个清晰的操作系统内部工作机制视角,同时强调理解和掌握这些概念对于任何软件开发人员的重要性。
|
19天前
|
安全 Linux 开发者
探索操作系统的心脏:内核与用户空间的交互
在数字世界的每一次点击和命令背后,隐藏着一个复杂而精妙的操作系统世界。本文将带你走进这个世界的核心,揭示内核与用户空间的神秘交互。通过深入浅出的解释和直观的代码示例,我们将一起理解操作系统如何协调硬件资源,管理进程和内存,以及提供文件系统服务。无论你是编程新手还是资深开发者,这篇文章都将为你打开一扇通往操作系统深层原理的大门。让我们一起开始这段旅程,探索那些支撑我们日常数字生活的技术基石吧!
30 6
|
18天前
|
算法 Linux
深入探索Linux内核的内存管理机制
本文旨在为读者提供对Linux操作系统内核中内存管理机制的深入理解。通过探讨Linux内核如何高效地分配、回收和优化内存资源,我们揭示了这一复杂系统背后的原理及其对系统性能的影响。不同于常规的摘要,本文将直接进入主题,不包含背景信息或研究目的等标准部分,而是专注于技术细节和实际操作。
|
19天前
|
Linux 调度 C语言
深入理解操作系统:从进程管理到内存优化
本文旨在为读者提供一次深入浅出的操作系统之旅,从进程管理的基本概念出发,逐步探索到内存管理的高级技巧。我们将通过实际代码示例,揭示操作系统如何高效地调度和优化资源,确保系统稳定运行。无论你是初学者还是有一定基础的开发者,这篇文章都将为你打开一扇了解操作系统深层工作原理的大门。
|
18天前
|
存储 缓存 网络协议
Linux操作系统的内核优化与性能调优####
本文深入探讨了Linux操作系统内核的优化策略与性能调优方法,旨在为系统管理员和高级用户提供一套实用的指南。通过分析内核参数调整、文件系统选择、内存管理及网络配置等关键方面,本文揭示了如何有效提升Linux系统的稳定性和运行效率。不同于常规摘要仅概述内容的做法,本摘要直接指出文章的核心价值——提供具体可行的优化措施,助力读者实现系统性能的飞跃。 ####
|
19天前
|
缓存 监控 网络协议
Linux操作系统的内核优化与实践####
本文旨在探讨Linux操作系统内核的优化策略与实际应用案例,深入分析内核参数调优、编译选项配置及实时性能监控的方法。通过具体实例讲解如何根据不同应用场景调整内核设置,以提升系统性能和稳定性,为系统管理员和技术爱好者提供实用的优化指南。 ####
|
24天前
|
存储 Linux 开发者
探索操作系统的内核——从理论到实践
操作系统是计算机科学的核心,它像一位默默无闻的指挥官,协调着硬件和软件之间的复杂关系。本文将深入操作系统的心脏——内核,通过直观的解释和丰富的代码示例,揭示其神秘面纱。我们将一起学习进程管理、内存分配、文件系统等关键概念,并通过实际代码,体验内核编程的魅力。无论你是初学者还是有经验的开发者,这篇文章都将带给你新的视角和知识。
|
22天前
|
机器学习/深度学习 人工智能 物联网
操作系统的心脏——深入理解内核机制
在本文中,我们揭开操作系统内核的神秘面纱,探索其作为计算机系统核心的重要性。通过详细分析内核的基本功能、类型以及它如何管理硬件资源和软件进程,我们将了解内核是如何成为现代计算不可或缺的基础。此外,我们还会探讨内核设计的挑战和未来趋势,为读者提供一个全面的内核知识框架。
|
23天前
|
消息中间件 安全 Linux
深入探索Linux操作系统的内核机制
本文旨在为读者提供一个关于Linux操作系统内核机制的全面解析。通过探讨Linux内核的设计哲学、核心组件、以及其如何高效地管理硬件资源和系统操作,本文揭示了Linux之所以成为众多开发者和组织首选操作系统的原因。不同于常规摘要,此处我们不涉及具体代码或技术细节,而是从宏观的角度审视Linux内核的架构和功能,为对Linux感兴趣的读者提供一个高层次的理解框架。

热门文章

最新文章