C++STL——map与set的模拟实现(上)

简介: C++STL——map与set的模拟实现(上)

map与set的部分源码参考

map和set的底层都是由红黑树实现的。

所以这里将上次实现的红黑树插入拿来用。

首先想一想,搜索二叉树不能修改值,因为会破坏整棵树的平衡。

set与map的部分源码:

class set {
public:
  // typedefs:
  typedef Key key_type;
  typedef Key value_type;
  typedef Compare key_compare;
  typedef Compare value_compare;
private:
  typedef rb_tree<key_type, value_type, //set这里传了一个K,一个V
                  identity<value_type>, key_compare, Alloc> rep_type;
  rep_type t;  // red-black tree representing set
template <class Key, class T, class Compare = less<Key>, class Alloc = alloc>
class map {
public:
// typedefs:
  typedef Key key_type;
  typedef T data_type;
  typedef T mapped_type;
  typedef pair<const Key, T> value_type;
private:
  typedef rb_tree<key_type, value_type, //map这里传了一个K,一个V
                  select1st<value_type>, key_compare, Alloc> rep_type;
  rep_type t;  // red-black tree representing map

这个是红黑树的部分源码:

template <class Key, class Value, class KeyOfValue, class Compare,class Alloc = alloc>
class rb_tree {
protected:
  typedef void* void_pointer;
  typedef __rb_tree_node_base* base_ptr;
  typedef __rb_tree_node<Value> rb_tree_node;
public:
  typedef rb_tree_node* link_type;
protected:
  size_type node_count; // keeps track of size of tree
  link_type header;  
  Compare key_compare;

set要传入到红黑树的Value的值是K,map要传入的值是pair<const K,V>

那么,这里完全可以区分传入的是set还是map,为什么要给红黑树传入第一个模板参数呢?

第一个模板参数是用来查找的,因为无论是set还是map都是用kay去查找的。

改造红黑树

这是红黑树的结点:

enum Color//利用枚举来给红黑树配色
{
  RED,
  BLACK
};
template<class T>
struct RBTreeNode
{
  RBTreeNode(const T& data)//让红黑树的结点变成一个模板就行了,因为有可能是set有可能是map
    :_data(data)
    , _color(RED)//这里一定要给红色,如果给黑色其他路径就要涉及到也要加黑色结点,更加麻烦
    , _left(nullptr)
    , _right(nullptr)
    , _parent(nullptr)
  {}
  RBTreeNode* _left;
  RBTreeNode* _right;
  RBTreeNode* _parent;
  T _data;
  Color _color;//结点的配色
};
namespace baiye
{
  template<class K>
  class set
  {
  public:
  private:
    RBTree<K, K> _t;//K模型
  };
}
namespace baiye
{
  template<class K, class V>
  class map
  {
  public:
  private:
    RBTree<K, pair<const K, V>> _p;//KV模型
  };
}

然后我们发现,后面的插入这里调用出现了问题:

原来写的是VK模型,但是现在set是K模型,要兼容两个模型。

让我们来看看源码是怎么做的:

源码这里多了一个模板参数,意思是将key取出来比较大小

这里可以写两个仿函数用:

namespace baiye
{
  template<class K>
  class set
  {
    struct setKeyOFV
    {
      const K& operator()(const K& key)
      {
        return key;
      }
    };
  public:
    bool insert(const K& key)
    {
      return _t.Insert(key);
    }
  private:
    RBTree<K, K, setKeyOFV> _t;
  };
}
namespace baiye
{
  template<class K, class V>
  class map
  {
    struct mapKeyOFV
    {
      const K& operator()(const pair<const K, V>& kv)
      {
        return kv.first;
      }
    };
  public:
    bool insert(const pair<const K, V>& kv)
    {
      return _p.Insert(kv);
    }
  private:
    RBTree<K, pair<const K, V>, mapKeyOFV> _p;
  };
}

红黑树的迭代器

先来实现*与->:

template<class T>
struct RBTreeIterator
{
  typedef RBTreeNode<T> Node;
  Node* _node;
  RBTreeIterator(Node* node)
    :_node(node)
  {}
  T& operator*()
  {
    return _node->_data;
  }
  T* operator->()
  {
    return &_node->_data;
  }
  bool operator!=(const Self& it)
  {
    return _node != it._node;
  }
};

迭代器难的是++和- -操作:

原来stl中的红黑树其实有一个哨兵位的头结点:

哨兵位中还有两个指针分别指向红黑树中的最小值和最大值,但是这里我并没有去实现这个哨兵位,所以就用另一种方法。

首先先给红黑树加begin和end函数:

iterator begin()
  {
    Node* cur = _root;
    while (cur && cur->left)
    {
      cur = cur->_left;
    }
    return iterator(cur);
  }
  iterator end()
  {
    return iterator(nullptr);
  }

然后是++,++是要走中序遍历的,我们要采用迭代的方式,以前要借助一个队列来进行中序遍历的方法进行++。

假设我们传入的迭代器的结点是8结点,那么下一个结点就是10号结点,也就是8号结点的右子树最小结点。

那么如果右为空呢?

右子树为空就说明不需要去右子树找了,需要向上找节点,假设是这样子的:

it指向5结点,发现右为空,那就向上走,走到6结点发现右不为空然后走到7结点,7结点右为空就要继续往上走,这个时候不应该走到6结点的位置,应该是8结点的位置。

假设这里再多出一个结点:

那么他的右为空也不能再走到7结点的位置了。

所以我们能总结出来一个规律。

右不为空就去找右子树的最小节点。

右为空就去找祖先(孩子为父节点的左的那个祖先)

相关文章
|
1月前
|
存储 JavaScript Java
(Python基础)新时代语言!一起学习Python吧!(四):dict字典和set类型;切片类型、列表生成式;map和reduce迭代器;filter过滤函数、sorted排序函数;lambda函数
dict字典 Python内置了字典:dict的支持,dict全称dictionary,在其他语言中也称为map,使用键-值(key-value)存储,具有极快的查找速度。 我们可以通过声明JS对象一样的方式声明dict
130 1
|
4月前
|
存储 缓存 JavaScript
Set和Map有什么区别?
Set和Map有什么区别?
358 1
|
1月前
|
缓存 算法 程序员
C++STL底层原理:探秘标准模板库的内部机制
🌟蒋星熠Jaxonic带你深入STL底层:从容器内存管理到红黑树、哈希表,剖析迭代器、算法与分配器核心机制,揭秘C++标准库的高效设计哲学与性能优化实践。
C++STL底层原理:探秘标准模板库的内部机制
|
27天前
|
存储 算法 容器
set_map的实现+set/map加持秒杀高频算法题锻炼算法思维
`set`基于红黑树实现,支持有序存储、自动去重,增删查效率为O(logN)。通过仿函数可自定义排序规则,配合空间配置器灵活管理内存。不支持修改元素值,迭代器失效需注意。`multiset`允许重复元素。常用于去重、排序及查找场景。
|
5月前
|
存储 JavaScript 前端开发
for...of循环在遍历Set和Map时的注意事项有哪些?
for...of循环在遍历Set和Map时的注意事项有哪些?
302 121
|
8月前
|
编译器 C++ 容器
【c++丨STL】基于红黑树模拟实现set和map(附源码)
本文基于红黑树的实现,模拟了STL中的`set`和`map`容器。通过封装同一棵红黑树并进行适配修改,实现了两种容器的功能。主要步骤包括:1) 修改红黑树节点结构以支持不同数据类型;2) 使用仿函数适配键值比较逻辑;3) 实现双向迭代器支持遍历操作;4) 封装`insert`、`find`等接口,并为`map`实现`operator[]`。最终,通过测试代码验证了功能的正确性。此实现减少了代码冗余,展示了模板与仿函数的强大灵活性。
223 2
|
5月前
|
存储 C++ 容器
unordered_set、unordered_multiset、unordered_map、unordered_multimap的介绍及使用
unordered_set是不按特定顺序存储键值的关联式容器,其允许通过键值快速的索引到对应的元素。在unordered_set中,元素的值同时也是唯一地标识它的key。在内部,unordered_set中的元素没有按照任何特定的顺序排序,为了能在常数范围内找到指定的key,unordered_set将相同哈希值的键值放在相同的桶中。unordered_set容器通过key访问单个元素要比set快,但它通常在遍历元素子集的范围迭代方面效率较低。它的迭代器至少是前向迭代器。前向迭代器的特性。
241 0
|
5月前
|
编译器 C++ 容器
用一棵红黑树同时封装出map和set
再完成上面的代码后,我们的底层代码已经完成了,这时候已经是一个底层STL的红黑树了,已经已符合库里面的要求了,这时候我们是需要给他穿上对应的“衣服”,比如穿上set的“衣服”,那么这个穿上set的“衣服”,那么他就符合库里面set的要求了,同样map一样,这时候我们就需要实现set与map了。因此,上层容器map需要向底层红黑树提供一个仿函数,用于获取T当中的键值Key,这样一来,当底层红黑树当中需要比较两个结点的键值时,就可以通过这个仿函数来获取T当中的键值了。我们就可以使用仿函数了。
67 0
|
5月前
|
存储 编译器 容器
set、map、multiset、multimap的介绍及使用以及区别,注意事项
set是按照一定次序存储元素的容器,使用set的迭代器遍历set中的元素,可以得到有序序列。set当中存储元素的value都是唯一的,不可以重复,因此可以使用set进行去重。set默认是升序的,但是其内部默认不是按照大于比较,而是按照小于比较。set中的元素不能被修改,因为set在底层是用二叉搜索树来实现的,若是对二叉搜索树当中某个结点的值进行了修改,那么这棵树将不再是二叉搜索树。
237 0

热门文章

最新文章