C++STL——map与set的模拟实现(上)

简介: C++STL——map与set的模拟实现(上)

map与set的部分源码参考

map和set的底层都是由红黑树实现的。

所以这里将上次实现的红黑树插入拿来用。

首先想一想,搜索二叉树不能修改值,因为会破坏整棵树的平衡。

set与map的部分源码:

class set {
public:
  // typedefs:
  typedef Key key_type;
  typedef Key value_type;
  typedef Compare key_compare;
  typedef Compare value_compare;
private:
  typedef rb_tree<key_type, value_type, //set这里传了一个K,一个V
                  identity<value_type>, key_compare, Alloc> rep_type;
  rep_type t;  // red-black tree representing set
template <class Key, class T, class Compare = less<Key>, class Alloc = alloc>
class map {
public:
// typedefs:
  typedef Key key_type;
  typedef T data_type;
  typedef T mapped_type;
  typedef pair<const Key, T> value_type;
private:
  typedef rb_tree<key_type, value_type, //map这里传了一个K,一个V
                  select1st<value_type>, key_compare, Alloc> rep_type;
  rep_type t;  // red-black tree representing map

这个是红黑树的部分源码:

template <class Key, class Value, class KeyOfValue, class Compare,class Alloc = alloc>
class rb_tree {
protected:
  typedef void* void_pointer;
  typedef __rb_tree_node_base* base_ptr;
  typedef __rb_tree_node<Value> rb_tree_node;
public:
  typedef rb_tree_node* link_type;
protected:
  size_type node_count; // keeps track of size of tree
  link_type header;  
  Compare key_compare;

set要传入到红黑树的Value的值是K,map要传入的值是pair<const K,V>

那么,这里完全可以区分传入的是set还是map,为什么要给红黑树传入第一个模板参数呢?

第一个模板参数是用来查找的,因为无论是set还是map都是用kay去查找的。

改造红黑树

这是红黑树的结点:

enum Color//利用枚举来给红黑树配色
{
  RED,
  BLACK
};
template<class T>
struct RBTreeNode
{
  RBTreeNode(const T& data)//让红黑树的结点变成一个模板就行了,因为有可能是set有可能是map
    :_data(data)
    , _color(RED)//这里一定要给红色,如果给黑色其他路径就要涉及到也要加黑色结点,更加麻烦
    , _left(nullptr)
    , _right(nullptr)
    , _parent(nullptr)
  {}
  RBTreeNode* _left;
  RBTreeNode* _right;
  RBTreeNode* _parent;
  T _data;
  Color _color;//结点的配色
};
namespace baiye
{
  template<class K>
  class set
  {
  public:
  private:
    RBTree<K, K> _t;//K模型
  };
}
namespace baiye
{
  template<class K, class V>
  class map
  {
  public:
  private:
    RBTree<K, pair<const K, V>> _p;//KV模型
  };
}

然后我们发现,后面的插入这里调用出现了问题:

原来写的是VK模型,但是现在set是K模型,要兼容两个模型。

让我们来看看源码是怎么做的:

源码这里多了一个模板参数,意思是将key取出来比较大小

这里可以写两个仿函数用:

namespace baiye
{
  template<class K>
  class set
  {
    struct setKeyOFV
    {
      const K& operator()(const K& key)
      {
        return key;
      }
    };
  public:
    bool insert(const K& key)
    {
      return _t.Insert(key);
    }
  private:
    RBTree<K, K, setKeyOFV> _t;
  };
}
namespace baiye
{
  template<class K, class V>
  class map
  {
    struct mapKeyOFV
    {
      const K& operator()(const pair<const K, V>& kv)
      {
        return kv.first;
      }
    };
  public:
    bool insert(const pair<const K, V>& kv)
    {
      return _p.Insert(kv);
    }
  private:
    RBTree<K, pair<const K, V>, mapKeyOFV> _p;
  };
}

红黑树的迭代器

先来实现*与->:

template<class T>
struct RBTreeIterator
{
  typedef RBTreeNode<T> Node;
  Node* _node;
  RBTreeIterator(Node* node)
    :_node(node)
  {}
  T& operator*()
  {
    return _node->_data;
  }
  T* operator->()
  {
    return &_node->_data;
  }
  bool operator!=(const Self& it)
  {
    return _node != it._node;
  }
};

迭代器难的是++和- -操作:

原来stl中的红黑树其实有一个哨兵位的头结点:

哨兵位中还有两个指针分别指向红黑树中的最小值和最大值,但是这里我并没有去实现这个哨兵位,所以就用另一种方法。

首先先给红黑树加begin和end函数:

iterator begin()
  {
    Node* cur = _root;
    while (cur && cur->left)
    {
      cur = cur->_left;
    }
    return iterator(cur);
  }
  iterator end()
  {
    return iterator(nullptr);
  }

然后是++,++是要走中序遍历的,我们要采用迭代的方式,以前要借助一个队列来进行中序遍历的方法进行++。

假设我们传入的迭代器的结点是8结点,那么下一个结点就是10号结点,也就是8号结点的右子树最小结点。

那么如果右为空呢?

右子树为空就说明不需要去右子树找了,需要向上找节点,假设是这样子的:

it指向5结点,发现右为空,那就向上走,走到6结点发现右不为空然后走到7结点,7结点右为空就要继续往上走,这个时候不应该走到6结点的位置,应该是8结点的位置。

假设这里再多出一个结点:

那么他的右为空也不能再走到7结点的位置了。

所以我们能总结出来一个规律。

右不为空就去找右子树的最小节点。

右为空就去找祖先(孩子为父节点的左的那个祖先)

相关文章
|
1月前
|
算法
你对Collection中Set、List、Map理解?
你对Collection中Set、List、Map理解?
63 18
你对Collection中Set、List、Map理解?
|
7天前
|
编译器 C语言 C++
【c++丨STL】list模拟实现(附源码)
本文介绍了如何模拟实现C++中的`list`容器。`list`底层采用双向带头循环链表结构,相较于`vector`和`string`更为复杂。文章首先回顾了`list`的基本结构和常用接口,然后详细讲解了节点、迭代器及容器的实现过程。 最终,通过这些步骤,我们成功模拟实现了`list`容器的功能。文章最后提供了完整的代码实现,并简要总结了实现过程中的关键点。 如果你对双向链表或`list`的底层实现感兴趣,建议先掌握相关基础知识后再阅读本文,以便更好地理解内容。
15 1
|
25天前
|
存储 缓存 安全
只会“有序无序”?面试官嫌弃的List、Set、Map回答!
小米,一位热衷于技术分享的程序员,通过与朋友小林的对话,详细解析了Java面试中常见的List、Set、Map三者之间的区别,不仅涵盖了它们的基本特性,还深入探讨了各自的实现原理及应用场景,帮助面试者更好地准备相关问题。
56 20
|
20天前
|
算法 C语言 C++
【c++丨STL】list的使用
本文介绍了STL容器`list`的使用方法及其主要功能。`list`是一种双向链表结构,适用于频繁的插入和删除操作。文章详细讲解了`list`的构造函数、析构函数、赋值重载、迭代器、容量接口、元素访问接口、增删查改操作以及一些特有的操作接口如`splice`、`remove_if`、`unique`、`merge`、`sort`和`reverse`。通过示例代码,读者可以更好地理解如何使用这些接口。最后,作者总结了`list`的特点和适用场景,并预告了后续关于`list`模拟实现的文章。
36 7
|
2月前
|
存储 编译器 C语言
【c++丨STL】vector的使用
本文介绍了C++ STL中的`vector`容器,包括其基本概念、主要接口及其使用方法。`vector`是一种动态数组,能够根据需要自动调整大小,提供了丰富的操作接口,如增删查改等。文章详细解释了`vector`的构造函数、赋值运算符、容量接口、迭代器接口、元素访问接口以及一些常用的增删操作函数。最后,还展示了如何使用`vector`创建字符串数组,体现了`vector`在实际编程中的灵活性和实用性。
66 4
|
23天前
|
存储 编译器 C语言
【c++丨STL】vector模拟实现
本文深入探讨了 `vector` 的底层实现原理,并尝试模拟实现其结构及常用接口。首先介绍了 `vector` 的底层是动态顺序表,使用三个迭代器(指针)来维护数组,分别为 `start`、`finish` 和 `end_of_storage`。接着详细讲解了如何实现 `vector` 的各种构造函数、析构函数、容量接口、迭代器接口、插入和删除操作等。最后提供了完整的模拟实现代码,帮助读者更好地理解和掌握 `vector` 的实现细节。
31 0
|
2月前
|
存储 编译器 C语言
【c++丨STL】string类的使用
本文介绍了C++中`string`类的基本概念及其主要接口。`string`类在C++标准库中扮演着重要角色,它提供了比C语言中字符串处理函数更丰富、安全和便捷的功能。文章详细讲解了`string`类的构造函数、赋值运算符、容量管理接口、元素访问及遍历方法、字符串修改操作、字符串运算接口、常量成员和非成员函数等内容。通过实例演示了如何使用这些接口进行字符串的创建、修改、查找和比较等操作,帮助读者更好地理解和掌握`string`类的应用。
63 2
|
2月前
|
存储 编译器 C++
【c++】类和对象(下)(取地址运算符重载、深究构造函数、类型转换、static修饰成员、友元、内部类、匿名对象)
本文介绍了C++中类和对象的高级特性,包括取地址运算符重载、构造函数的初始化列表、类型转换、static修饰成员、友元、内部类及匿名对象等内容。文章详细解释了每个概念的使用方法和注意事项,帮助读者深入了解C++面向对象编程的核心机制。
113 5
|
2月前
|
存储 编译器 C++
【c++】类和对象(中)(构造函数、析构函数、拷贝构造、赋值重载)
本文深入探讨了C++类的默认成员函数,包括构造函数、析构函数、拷贝构造函数和赋值重载。构造函数用于对象的初始化,析构函数用于对象销毁时的资源清理,拷贝构造函数用于对象的拷贝,赋值重载用于已存在对象的赋值。文章详细介绍了每个函数的特点、使用方法及注意事项,并提供了代码示例。这些默认成员函数确保了资源的正确管理和对象状态的维护。
116 4
|
2月前
|
存储 编译器 Linux
【c++】类和对象(上)(类的定义格式、访问限定符、类域、类的实例化、对象的内存大小、this指针)
本文介绍了C++中的类和对象,包括类的概念、定义格式、访问限定符、类域、对象的创建及内存大小、以及this指针。通过示例代码详细解释了类的定义、成员函数和成员变量的作用,以及如何使用访问限定符控制成员的访问权限。此外,还讨论了对象的内存分配规则和this指针的使用场景,帮助读者深入理解面向对象编程的核心概念。
154 4