“堆”排序

简介: “堆”排序

  如果还没有了解过什么是“堆”的话,那可以转移到数据结构专栏有关堆的这一篇文章,二叉树(堆)_KOBE 0824 BRYANT的博客-CSDN博客,这里详细介绍了堆的各种性质,这里就默认大家已经了解“堆”这个数据结构了。


      在这里呢我要分享一个效率非常高的排序方法,“堆排序”,它的时间复杂度能够达到惊人的  O(N*logN) ,这比冒泡排序的 O(N^2) 可要高效了不少的,你试想一下,如果N是一百万,那么(N*logN)就是两千万,但是(N^2)可是“一万亿”啊!!!这个差距是什么概念!所以堆排序的效率可要比冒泡排序的效率高得太多了。


      那么这个堆排序是怎样的呢?能够达到这种效率,接下来我们就一探究竟。


     给定你一个数组,想要进行堆排序首先得先建堆,那如果是要排升序的话,我们需要建小堆还是建大堆呢??思考5秒钟,你可能会想,这还用说吗?升序肯定是建小堆啊,小堆从上到下不就是升序吗,但是事实真的是这样吗?


     你试想一下,如果建小堆,也就意味着你的堆顶的数就是最小的,这个数就不用再动了,但是如果后面的数你需要选出次小的数放到第二个位置,那么你就需要忽略第一个数,以第二个数开始的后面的所有数看作是一个堆,然后调整找到次小的数放到第二个位置,但是以第二个数看作是堆顶的话,那么从第二个数开始的后面的数就不再是一个小堆了,那要选次小的数的话就需要重新建一个小堆,那代价太大了,还不如遍历一遍找到最小的数呢!所以排升序建小堆的话是不可取的。



那么大佬就想,排升序建小堆不行,那我就建大堆,这个大堆的堆顶就是这棵树中最大的,然后和堆的删除走同样的思路,“替换法”。用堆顶的元素和最后一个元素交换,那么堆顶的元素就来到了最后的位置,也就是升序之后的最大的数的位置,并且这里没有影响这棵树本来的性质(各节点之间的关系),然后不把这个最后的数看作是这个大堆里面的数,这时再对堆顶的数(交换上来的数)走一遍向下调整,原来的堆中的次大的数就选出来了,以此类推,就能完成对这个数组的排序了。这真是一个很绝的想法。不愧是大佬。


这里建大堆用向下调整的方法为妙,向下调整建堆的方法请参考博主的数据结构专栏的 二叉树(堆)_KOBE 0824 BRYANT的博客-CSDN博客  这一篇文章,里面有详细过程。


#include <stdio.h>
#include <assert.h>
void swap(int* a, int* b)
{
  assert(a && b);
  int tmp = *a;
  *a = *b;
  *b = tmp;
}
void AdjustDown(int* a, int parent, int n)
{
  assert(a);
  int child = parent * 2 + 1;
  while (child < n)
  {
    if (child + 1 < n && a[child+1] > a[child])
    {
      child++;
    }
    if (a[child] > a[parent])
    {
      swap(&a[child], &a[parent]);
      parent = child;
      child = parent * 2 + 1;
    }
    else
    {
      break;
    }
  }
}
int main()
{
  int arr[] = { 123,63,54,36,87,963,1254 };
  int sz = sizeof(arr) / sizeof(arr[0]);
  int parent = 0;
  //建堆的时间复杂度是: O(N)
  for (parent = (sz - 1 - 1) / 2; parent >= 0; parent--)
  {
    AdjustDown(arr, parent, sz);
  }
  //替换法排序的时间复杂度是: O(N*logN)
  int end = sz;
  while (end--)
  {
    swap(&arr[0], &arr[end]);
    AdjustDown(arr, 0, end);
  }
  //所以堆排序的时间复杂度是:O(N+N*logN)=O(N*logN)
  int i = 0;
  for (i = 0; i < sz; i++)
  {
    printf("%d ", arr[i]);
  }
  printf("\n");
  return 0;
}


在原数组向下调整建大堆的时间复杂度为 O(N);证明如下:



替换法排序的时间复杂度是: O(N*logN);所以整体堆排序的时间复杂度为:O(N*logN);


证明如下:


相关文章
|
10天前
|
数据采集 人工智能 安全
|
5天前
|
机器学习/深度学习 人工智能 前端开发
构建AI智能体:七十、小树成林,聚沙成塔:随机森林与大模型的协同进化
随机森林是一种基于决策树的集成学习算法,通过构建多棵决策树并结合它们的预测结果来提高准确性和稳定性。其核心思想包括两个随机性:Bootstrap采样(每棵树使用不同的训练子集)和特征随机选择(每棵树分裂时只考虑部分特征)。这种方法能有效处理大规模高维数据,避免过拟合,并评估特征重要性。随机森林的超参数如树的数量、最大深度等可通过网格搜索优化。该算法兼具强大预测能力和工程化优势,是机器学习中的常用基础模型。
315 164
|
4天前
|
机器学习/深度学习 自然语言处理 机器人
阿里云百炼大模型赋能|打造企业级电话智能体与智能呼叫中心完整方案
畅信达基于阿里云百炼大模型推出MVB2000V5智能呼叫中心方案,融合LLM与MRCP+WebSocket技术,实现语音识别率超95%、低延迟交互。通过电话智能体与座席助手协同,自动化处理80%咨询,降本增效显著,适配金融、电商、医疗等多行业场景。
320 155
|
5天前
|
编解码 人工智能 自然语言处理
⚽阿里云百炼通义万相 2.6 视频生成玩法手册
通义万相Wan 2.6是全球首个支持角色扮演的AI视频生成模型,可基于参考视频形象与音色生成多角色合拍、多镜头叙事的15秒长视频,实现声画同步、智能分镜,适用于影视创作、营销展示等场景。
361 4
|
12天前
|
SQL 自然语言处理 调度
Agent Skills 的一次工程实践
**本文采用 Agent Skills 实现整体智能体**,开发框架采用 AgentScope,模型使用 **qwen3-max**。Agent Skills 是 Anthropic 新推出的一种有别于mcp server的一种开发方式,用于为 AI **引入可共享的专业技能**。经验封装到**可发现、可复用的能力单元**中,每个技能以文件夹形式存在,包含特定任务的指导性说明(SKILL.md 文件)、脚本代码和资源等 。大模型可以根据需要动态加载这些技能,从而扩展自身的功能。目前不少国内外的一些框架也开始支持此种的开发方式,详细介绍如下。
895 6

热门文章

最新文章