1.3.3 发展历程
多天线技术可大幅提高通信系统的信道容量和传输可靠性,目前已被LTE、LTE-Advanced(4G)、IEEE 802.11n等大多数新兴的移动通信标准所采用,并被公认为5G移动通信系统中最为核心的传输技术之一。然而,2010年以前,大部分理论研究和实际通信标准主要局限于天线数量较少的小规模MIMO系统,例如,4G标准通常在下行链路上可支持1/2/4/8根发送天线,在上行链路上可支持1/2/4根发送天线,能够获得约10bit/(s·Hz)的频谱效率,而这难以满足未来无线网络中数据业务急剧增加的需求。
2010年年底,美国贝尔实验室科学家T. Marzetta[2-3]提出的大规模天线技术,该技术利用大规模天线阵列(天线数为几十至上千)带来巨大阵列增益和干扰抑制增益。如图1-5所示,大规模天线技术可以使用相同的时频资源同时向多个用户提供服务,使得小区总频谱效率和边缘用户的频谱效率提高数倍甚至数个量级,大规模天线技术理论也由此形成。Massive MIMO的基本原理是当移动通信系统中基站端天线数远大于用户数时,根据概率统计学原理,基站到各个用户的信道趋于正交,因此用户间干扰很弱。大规模天线技术获得巨大增益的原因有两个方面:一方面,基站侧的大规模天线阵列为每个用户带来了巨大的阵列增益,从而提升了每个用户的信号传输信噪比,使得大规模天线技术可以为多个用户提供同时、同频的高质量服务;另一方面,随着天线阵列规模趋于无限大,基站侧赋形后的波束将变得非常窄,具有极高的方向选择性及赋形增益,这种情况下多个用户之间的干扰将能够得到很好的控制[1]。
图1-5 大规模天线系统示意图
图1-6给出了大规模天线阵列系统(基站侧配置256根发射天线)与传统天线阵列 系统(基站侧配置8根发射天线)复用4个终端(配置1根接收天线)在不同干扰源数量 场景下的链路仿真结果(纵轴为误比特率)。可以看出,相比于传统天线阵列系统,大 规模天线阵列系统能很好地通过大规模天线带来的空间分集增益和阵列增益提升移动 通信系统的链路接收性能,并且具有极强的干扰抑制能力。
2010—2013年间,贝尔实验室、瑞典的隆德大学(Lund University)、林雪平大学(Linkoping University)、美国的莱斯大学(Rice University)等研究机构对Massive MIMO信道容量、传输、检测与信道状态信息获取等基本理论与技术进行了广泛的探索。在这些研究中,阿朗的贝尔实验室的研究成果起到了很大的推动作用,他们发表了多篇对该技术的理论分析论文,并在2011年2月的Green Touch技术讨论会上演示了Massive MIMO原型机,展示了Massive MIMO在节能、干扰抑制等方面的巨大优势和潜力。考虑到工程实现问题,大规模天线系统在实现时多采用面阵结构。
中国移动通信产业的发展在经历了“2G追赶”“3G突破”之后,4G也取得重大成功,并于2013年12月开始实际部署。中国对大规模天线技术也高度重视,于2013年年底专门成立了大规模天线技术专题组,集中了国内研究院所、运营商、设备商及高等院校中相关技术领域的核心单位,启动了对面向5G的Massive MIMO技术的研究与标准化工作,并取得了大量成果。例如,中兴通讯股份有限公司推出的采用大规模天线技术的Pre5G商用系统、中国移动通信集团有限公司主推的3D-MIMO技术,都极大地提升了LTE商用系统的网络容量和服务质量。