练习1.24
我们先将书中已给出的代码写入Edwin中。
(define (fermat-test n)
(define (try-it a)
(= (expmod a n n) a))
(try-it (+ 1 (random (- n 1)))))
(define (fast-prime? n times)
(cond ((= times 0) true)
((fermat-test n) (fast-prime? n (- times 1)))
(else false)))
(define (expmod base exp m)
(cond ((= exp 0) 1)
((even? exp) (remainder (square (expmod base (/ exp 2) m)) m))
(else (remainder (* base (expmod base (- exp 1) m)) m))))
于是就有了一个新的prime?函数如下:
(define (prime? n)
(fast-prime? n 100))
然后载入上一题中的get-time&prime函数,如果已经在上一题中保存了起来现在就可以直接load了。然后经过一番测试后,结论很明显咯。练习1.22中的get-time&prime函数的复杂度为Θ(√n),而本题中的复杂度为Θ(logn)。