高并发编程-线程通信_使用wait和notify进行线程间的通信

简介: 高并发编程-线程通信_使用wait和notify进行线程间的通信

20191031000606569.png


概述

Java中线程通信协作的最常见的两种方式:

  • syncrhoized加锁的线程的Object类的wait()/notify()/notifyAll()
  • ReentrantLock类加锁的线程的Condition类的await()/signal()/signalAll()

线程间直接的数据交换:

  • 通过管道进行线程间通信:1)字节流;2)字符流

可参考: Java多线程编程核心技术


场景


场景假设:

一个工作台,两个工人: Worker A 和 Workder B .

约定,Worker A 生产货物到工作台上, Workder B 从工作台 取走(消费)货物。

  • 当 工作台上没有货物时,Worker A 才生产货物,否则等待Worker B 取走(消费)货物。
  • 当 工作台上有货物时, Woker B 才从工作台取走(消费)货物,否则等待Worker A 生产货物


引子


我们先来看下线程之间不通信的情况 (错误示例)

package com.artisan.test;
public class ProduceConsumeWrongDemo {
    // 锁
    private final Object LOCK = new Object();
    // 模拟多线程间需要通信的数据  i
    private int i = 0 ;
    public void produce() throws InterruptedException {
        // 加锁
        synchronized (LOCK){
            System.out.println("produce:" + i++);
            Thread.sleep(1_000);
        }
    }
    public void consume() throws InterruptedException{
        // 加锁
        synchronized (LOCK){
            System.out.println("consume:" + i);
            Thread.sleep(1_000);
        }
    }
    public static void main(String[] args) throws InterruptedException{
        ProduceConsumeWrongDemo pc = new ProduceConsumeWrongDemo();
        // 生产线程
        new Thread(()->{
                while (true){
                    try {
                        pc.produce();
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
        }).start();
        // 消费线程
        new Thread(()->{
            while (true){
                try {
                    pc.consume();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }).start();
    }
}

运行结果:

"E:\Program Files\Java\jdk1.8.0_161\bin\java" "-javaagent:E:\Program Files\JetBrains\IntelliJ IDEA 2017.2.4\lib\idea_rt.jar=52137:E:\Program Files\JetBrains\IntelliJ IDEA 2017.2.4\bin" -Dfile.encoding=UTF-8 -classpath "E:\Program Files\Java\jdk1.8.0_161\jre\lib\charsets.jar;E:\Program Files\Java\jdk1.8.0_161\jre\lib\deploy.jar;E:\Program Files\Java\jdk1.8.0_161\jre\lib\ext\access-bridge-64.jar;E:\Program Files\Java\jdk1.8.0_161\jre\lib\ext\cldrdata.jar;E:\Program Files\Java\jdk1.8.0_161\jre\lib\ext\dnsns.jar;E:\Program Files\Java\jdk1.8.0_161\jre\lib\ext\jaccess.jar;E:\Program Files\Java\jdk1.8.0_161\jre\lib\ext\jfxrt.jar;E:\Program Files\Java\jdk1.8.0_161\jre\lib\ext\localedata.jar;E:\Program Files\Java\jdk1.8.0_161\jre\lib\ext\nashorn.jar;E:\Program Files\Java\jdk1.8.0_161\jre\lib\ext\sunec.jar;E:\Program Files\Java\jdk1.8.0_161\jre\lib\ext\sunjce_provider.jar;E:\Program Files\Java\jdk1.8.0_161\jre\lib\ext\sunmscapi.jar;E:\Program Files\Java\jdk1.8.0_161\jre\lib\ext\sunpkcs11.jar;E:\Program Files\Java\jdk1.8.0_161\jre\lib\ext\zipfs.jar;E:\Program Files\Java\jdk1.8.0_161\jre\lib\javaws.jar;E:\Program Files\Java\jdk1.8.0_161\jre\lib\jce.jar;E:\Program Files\Java\jdk1.8.0_161\jre\lib\jfr.jar;E:\Program Files\Java\jdk1.8.0_161\jre\lib\jfxswt.jar;E:\Program Files\Java\jdk1.8.0_161\jre\lib\jsse.jar;E:\Program Files\Java\jdk1.8.0_161\jre\lib\management-agent.jar;E:\Program Files\Java\jdk1.8.0_161\jre\lib\plugin.jar;E:\Program Files\Java\jdk1.8.0_161\jre\lib\resources.jar;E:\Program Files\Java\jdk1.8.0_161\jre\lib\rt.jar;D:\IdeaProjects\mvc\target\classes" com.artisan.test.ProduceConsumeWrongDemo
produce:0
produce:1
consume:2
consume:2
consume:2
produce:2
consume:3
consume:3
consume:3
produce:3
produce:4
produce:5
consume:6
....
....
....
....
....
....
....


很明显的可以看到,数据都是错乱的,因为没有线程间的通信,全凭CPU调度,生产线程和消费线程都很随意,数据一团糟糕,那该如何改进呢?


synchronized wait/notify机制


wait()——让当前线程 (Thread.concurrentThread()

方法所返回的线程) 释放对象锁并进入等待(阻塞)状态。

notify()——唤醒一个正在等待相应对象锁的线程,使其进入就绪队列,以便在当前线程释放锁后竞争锁,进而得到CPU的执行。

notifyAll()——唤醒所有正在等待相应对象锁的线程,使它们进入就绪队列,以便在当前线程释放锁后竞争锁,进而得到CPU的执行。

为了解决上面的问题,我们先来了解下synchronized wait/notify .


wait()、notify()和notifyAll()方法是本地方法,并且为final方法,无法被重写。


调用某个对象的wait()方法能让当前线程阻塞,并且当前线程必须拥有此对象的monitor(即锁). 因此调用wait()方法必须在同步块或者同步方法中进行(synchronized块或者synchronized方法)。如果当前线程没有这个对象的锁就调用wait()方法,则会抛出IllegalMonitorStateException.


调用某个对象的wait()方法,相当于让当前线程交出(释放)此对象的monitor,然后进入等待状态,等待后续再次获得此对象的锁


调用某个对象的notify()方法能够唤醒一个正在等待这个对象的monitor的线程,如果有多个线程都在等待这个对象的monitor,则只能唤醒其中一个线程. 同样的,调用某个对象的notify()方法,当前线程也必须拥有这个对象的monitor,因此调用notify()方法必须在同步块或者同步方法中进行(synchronized块或者synchronized方法)。


调用notifyAll()方法能够唤醒所有正在等待这个对象的monitor的线程


notify()和notifyAll()方法只是唤醒等待该对象的monitor的线程,并不决定哪个线程能够获取到monitor。


举个例子: 假如有三个线程Thread1、Thread2和Thread3都在等待对象objectA的monitor,此时Thread4拥有对象objectA的monitor,当在Thread4中调用objectA.notify()方法之后,Thread1、Thread2和Thread3只有一个能被唤醒。


注意,被唤醒不等于立刻就获取了objectA的monitor。


假若在Thread4中调用objectA.notifyAll()方法,则Thread1、Thread2和Thread3三个线程都会被唤醒,至于哪个线程接下来能够获取到objectA的monitor就具体依赖于操作系统的调度了。


一个线程被唤醒不代表立即获取了对象的monitor,只有等调用完notify()或者notifyAll()并退出synchronized块,释放对象锁后,其余线程才可获得锁执行。


synchronized wait/notify 改造

package com.artisan.test;
public class ProduceConsumerDemo {
    // 对象监视器-锁
    private final Object LOCK = new Object();
    // 是否生产出数据的标识
    private boolean isProduced = false;
    // volatile 确保可见性, 假设 i 就是生产者生产的数据
    private volatile int i = 0 ;
    public  void produce(){
        // 加锁
        synchronized (LOCK){
            if (isProduced){
                try {
                    // 让当前线程 (Thread.concurrentThread() 方法所返回的线程) 释放对象锁并进入等待(阻塞)状态
                    // 如果已经生产,则等待
                    LOCK.wait();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }else{
                // 生产数据
                i++;
                System.out.println("Produce:" + i);
                // 唤醒一个正在等待相应对象锁的线程,使其进入就绪队列,以便在当前线程释放锁后竞争锁,进而得到CPU的执行
                // 通知等待的Worker B 来消费数据
                LOCK.notify();
                // 将生产标识置为true
                isProduced = true;
            }
        }
    }
    public void consume(){
        // 加锁
        synchronized (LOCK){
            if (isProduced){
                // 消费数据
                System.out.println("Consume:" + i);
                // 唤醒一个正在等待相应对象锁的线程,使其进入就绪队列,以便在当前线程释放锁后竞争锁,进而得到CPU的执行
                // 通知 等待的Wokrer A 生产数据
                LOCK.notify();
                // 已经消费完了,将生产标识置为false
                isProduced = false;
            }else{
                try {
                    // 让当前线程 (Thread.concurrentThread() 方法所返回的线程) 释放对象锁并进入等待(阻塞)状态
                    // 未生产,Worker B等待
                    LOCK.wait();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }
    }
    public static void main(String[] args) {
        ProduceConsumerDemo produceConsumerDemo = new ProduceConsumerDemo();
        new Thread(){
            @Override
            public void run() {
                while(true) produceConsumerDemo.produce();
            }
        }.start();
        new Thread(){
            @Override
            public void run() {
                while(true) produceConsumerDemo.consume();
            }
        }.start();
    }
}


20191001000746920.png


当然了并不是绝对的上面的对应关系(这里只是为了演示),因为notify唤醒后,线程只是进入Runnable状态,至于哪个线程能进入到running状态,就看哪个线程能抢到CPU的资源了。 JVM规范并没有规定哪个线程优先得到执行权,每个JVM的实现都是不同的


单个生产者 单个消费者,运行OK

.....
.....
.....
Produce:1171
Consume:1171
Produce:1172
Consume:1172
Produce:1173
Consume:1173
Produce:1174
Consume:1174
Produce:1175
Consume:1175
Produce:1176
Consume:1176
.....
.....
.....


问题


单个生产者 单个消费者 上面的代码是没有问题的,加入有多个生产者 和多个消费者呢?

我们来复用上面的代码来演示下 ,其他代码保持不变,仅在main方法中改造下,两个生产者,两个消费者

  Stream.of("P1","P2").forEach(n-> new Thread(){
            @Override
            public void run() {
                while(true) produceConsumerDemo.produce();
            }
        }.start());
        Stream.of("C1","C2").forEach(n->new Thread(){
            @Override
            public void run() {
                while(true) produceConsumerDemo.consume();
            }
        }.start());


2019100100203845.png


下篇博客,我们来分析下原因,并给出解决办法

相关文章
|
10月前
|
缓存 监控 安全
高并发编程知识体系
本文将从线程的基础理论谈起,逐步探究线程的内存模型,线程的交互,线程工具和并发模型的发展。扫除关于并发编程的诸多模糊概念,从新构建并发编程的层次结构。
|
安全 Java 开发者
深入解读JAVA多线程:wait()、notify()、notifyAll()的奥秘
在Java多线程编程中,`wait()`、`notify()`和`notifyAll()`方法是实现线程间通信和同步的关键机制。这些方法定义在`java.lang.Object`类中,每个Java对象都可以作为线程间通信的媒介。本文将详细解析这三个方法的使用方法和最佳实践,帮助开发者更高效地进行多线程编程。 示例代码展示了如何在同步方法中使用这些方法,确保线程安全和高效的通信。
248 9
|
Java
JAVA多线程通信:为何wait()与notify()如此重要?
在Java多线程编程中,`wait()` 和 `notify()/notifyAll()` 方法是实现线程间通信的核心机制。它们通过基于锁的方式,使线程在条件不满足时进入休眠状态,并在条件满足时被唤醒,从而确保数据一致性和同步。相比其他通信方式,如忙等待,这些方法更高效灵活。 示例代码展示了如何在生产者-消费者模型中使用这些方法实现线程间的协调和同步。
143 3
|
12月前
|
Java 调度
|
安全 Java
Java多线程通信新解:本文通过生产者-消费者模型案例,深入解析wait()、notify()、notifyAll()方法的实用技巧
【10月更文挑战第20天】Java多线程通信新解:本文通过生产者-消费者模型案例,深入解析wait()、notify()、notifyAll()方法的实用技巧,包括避免在循环外调用wait()、优先使用notifyAll()、确保线程安全及处理InterruptedException等,帮助读者更好地掌握这些方法的应用。
180 1
|
2月前
|
Java
如何在Java中进行多线程编程
Java多线程编程常用方式包括:继承Thread类、实现Runnable接口、Callable接口(可返回结果)及使用线程池。推荐线程池以提升性能,避免频繁创建线程。结合同步与通信机制,可有效管理并发任务。
152 6
|
5月前
|
Java API 微服务
为什么虚拟线程将改变Java并发编程?
为什么虚拟线程将改变Java并发编程?
306 83
|
2月前
|
Java 调度 数据库
Python threading模块:多线程编程的实战指南
本文深入讲解Python多线程编程,涵盖threading模块的核心用法:线程创建、生命周期、同步机制(锁、信号量、条件变量)、线程通信(队列)、守护线程与线程池应用。结合实战案例,如多线程下载器,帮助开发者提升程序并发性能,适用于I/O密集型任务处理。
271 0
|
3月前
|
算法 Java
Java多线程编程:实现线程间数据共享机制
以上就是Java中几种主要处理多线程序列化资源以及协调各自独立运行但需相互配合以完成任务threads 的技术手段与策略。正确应用上述技术将大大增强你程序稳定性与效率同时也降低bug出现率因此深刻理解每项技术背后理论至关重要.
239 16
|
7月前
|
机器学习/深度学习 消息中间件 存储
【高薪程序员必看】万字长文拆解Java并发编程!(9-2):并发工具-线程池
🌟 ​大家好,我是摘星!​ 🌟今天为大家带来的是并发编程中的强力并发工具-线程池,废话不多说让我们直接开始。
259 0

热门文章

最新文章