在新模型中,作者在训练期间渲染图像补丁块。这使作者能够进一步解决渲染的补丁和 groud truth 之间的失调,这通常是由微小的相机姿态错误或被拍摄物体的轻微移动造成的。首先,作者分析了错位如何通过利用训练后渲染出的图像帧和相应的 groud truth 之间的估计光流来影响推理图像质量。作者分析并讨论了以前的错位感知损失的局限性,并为根据作者的任务目标提出了一种新的对齐策略。作者设计了一种新的频率感知损失,它进一步提高了训练集测试集的渲染质量,并且没有额外的开销。因此,AligNeRF 在高分辨率 3D 重建任务中的性能大大优于目前最好的方法。