详细解读 | 如何让你的DETR目标检测模型快速收敛(二)

简介: 详细解读 | 如何让你的DETR目标检测模型快速收敛(二)

4实验


表1

表1给出了DETR和条件DETR的结果。具有50个训练期的DETR比500个训练期的表现差得多。

对于R50和R101具有50个训练周期的条件DETR作为backbone,其表现略低于具有500个训练周期的DETR。

对于DC5-R50和DC5-R101,带有50个训练周期的条件DETR的性能与带有500个训练周期的DETR相似。

4个backbone 75/108个训练周期的条件DETR优于500个训练周期的DETR。

总之,高分辨率backbone DC5-R50和DC5-R101的有条件DETR比原始的DETR快10倍,低分辨率backbone R50和R101快6.67倍。换句话说,有条件的DETR对于更强大的backbone和更好的性能表现得更好。

表2

表2中显示,在DC5-R50(16×)上的方法与可变形的方法表现相同DETR-R50(多尺度、8×)。考虑到单尺度可变形DETR-DC5-R50-SS的AP为41.5(低于43.8)(表1),可以看到,可变形的DETR受益于多尺度和高分辨率编码器。

本文方法的性能也与TSP-FCOS TSP-RCNN。这2种方法包含一个在少量选定位置/区域上的transformer编码器(在TSP-FCOS和TSP-RCNN区域提议中感兴趣的特性),而不使用transformer解码器是FCOS和Faster RCNN的扩展。


5参考


[1].Conditional DETR for Fast Training Convergence

相关文章
|
机器学习/深度学习 存储 算法
神经网络中的量化与蒸馏
本文将深入研究深度学习中精简模型的技术:量化和蒸馏
100 0
|
3月前
|
JSON 算法 数据可视化
5.3 目标检测YOLOv3实战:叶病虫害检测——损失函数、模型训练
这篇文章详细介绍了使用YOLOv3模型进行叶病虫害检测时的损失函数配置、模型训练过程、评估方法以及模型预测步骤,并提供了相应的代码实现和可能的改进方案。
|
4月前
|
计算机视觉 异构计算
【YOLOv8改进-SPPF】 AIFI : 基于注意力的尺度内特征交互,保持高准确度的同时减少计算成本
YOLOv8专栏介绍了该系列目标检测框架的最新改进与实战应用。文章提出RT-DETR,首个实时端到端检测器,解决了速度与精度问题。通过高效混合编码器和不确定性最小化查询选择,RT-DETR在COCO数据集上实现高AP并保持高帧率,优于其他YOLO版本。论文和代码已开源。核心代码展示了AIFI Transformer层,用于位置嵌入。更多详情见[YOLOv8专栏](https://blog.csdn.net/shangyanaf/category_12303415.html)。
|
机器学习/深度学习 算法
基于贝叶斯优化CNN-LSTM混合神经网络预测(Matlab代码实现)
基于贝叶斯优化CNN-LSTM混合神经网络预测(Matlab代码实现)
210 0
|
机器学习/深度学习 传感器 算法
【CNN回归预测】基于贝叶斯优化卷积神经网络BO-CNN实现数据回归预测附matlab代码
【CNN回归预测】基于贝叶斯优化卷积神经网络BO-CNN实现数据回归预测附matlab代码
|
计算机视觉
【目标检测出】评价指标
【目标检测出】评价指标
143 0
|
机器学习/深度学习 数据可视化 计算机视觉
详细解读 | 如何让你的DETR目标检测模型快速收敛(一)
详细解读 | 如何让你的DETR目标检测模型快速收敛(一)
509 0
|
机器学习/深度学习 计算机视觉 索引
目标检测无痛涨点新方法 | DRKD蒸馏让ResNet18拥有ResNet50的精度(一)
目标检测无痛涨点新方法 | DRKD蒸馏让ResNet18拥有ResNet50的精度(一)
521 0
|
计算机视觉
目标检测无痛涨点新方法 | DRKD蒸馏让ResNet18拥有ResNet50的精度(二)
目标检测无痛涨点新方法 | DRKD蒸馏让ResNet18拥有ResNet50的精度(二)
135 0
|
计算机视觉 异构计算
目标检测系列 | 无NMS的端到端目标检测模型,超越OneNet,FCOS等SOTA!(二)
目标检测系列 | 无NMS的端到端目标检测模型,超越OneNet,FCOS等SOTA!(二)
150 0
下一篇
无影云桌面