详细解读 | 如何让你的DETR目标检测模型快速收敛(二)

简介: 详细解读 | 如何让你的DETR目标检测模型快速收敛(二)

4实验


表1

表1给出了DETR和条件DETR的结果。具有50个训练期的DETR比500个训练期的表现差得多。

对于R50和R101具有50个训练周期的条件DETR作为backbone,其表现略低于具有500个训练周期的DETR。

对于DC5-R50和DC5-R101,带有50个训练周期的条件DETR的性能与带有500个训练周期的DETR相似。

4个backbone 75/108个训练周期的条件DETR优于500个训练周期的DETR。

总之,高分辨率backbone DC5-R50和DC5-R101的有条件DETR比原始的DETR快10倍,低分辨率backbone R50和R101快6.67倍。换句话说,有条件的DETR对于更强大的backbone和更好的性能表现得更好。

表2

表2中显示,在DC5-R50(16×)上的方法与可变形的方法表现相同DETR-R50(多尺度、8×)。考虑到单尺度可变形DETR-DC5-R50-SS的AP为41.5(低于43.8)(表1),可以看到,可变形的DETR受益于多尺度和高分辨率编码器。

本文方法的性能也与TSP-FCOS TSP-RCNN。这2种方法包含一个在少量选定位置/区域上的transformer编码器(在TSP-FCOS和TSP-RCNN区域提议中感兴趣的特性),而不使用transformer解码器是FCOS和Faster RCNN的扩展。


5参考


[1].Conditional DETR for Fast Training Convergence

相关文章
|
机器学习/深度学习 算法 数据挖掘
目标检测算法——YOLOv3
目标检测算法——YOLOv3
457 0
目标检测算法——YOLOv3
|
27天前
|
机器学习/深度学习 计算机视觉
YOLOv11改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
YOLOv11改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
75 9
YOLOv11改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
|
25天前
|
人工智能 计算机视觉
RT-DETR改进策略【损失函数篇】| NWD损失函数,提高小目标检测精度
RT-DETR改进策略【损失函数篇】| NWD损失函数,提高小目标检测精度
63 5
RT-DETR改进策略【损失函数篇】| NWD损失函数,提高小目标检测精度
|
27天前
|
人工智能 计算机视觉
YOLOv11改进策略【损失函数篇】| NWD损失函数,提高小目标检测精度
YOLOv11改进策略【损失函数篇】| NWD损失函数,提高小目标检测精度
75 9
|
5月前
|
机器学习/深度学习 调度 知识图谱
TimeDART:基于扩散自回归Transformer 的自监督时间序列预测方法
近年来,深度神经网络成为时间序列预测的主流方法。自监督学习通过从未标记数据中学习,能够捕获时间序列的长期依赖和局部特征。TimeDART结合扩散模型和自回归建模,创新性地解决了时间序列预测中的关键挑战,在多个数据集上取得了最优性能,展示了强大的泛化能力。
154 0
TimeDART:基于扩散自回归Transformer 的自监督时间序列预测方法
|
8月前
|
计算机视觉 异构计算
【YOLOv8改进-SPPF】 AIFI : 基于注意力的尺度内特征交互,保持高准确度的同时减少计算成本
YOLOv8专栏介绍了该系列目标检测框架的最新改进与实战应用。文章提出RT-DETR,首个实时端到端检测器,解决了速度与精度问题。通过高效混合编码器和不确定性最小化查询选择,RT-DETR在COCO数据集上实现高AP并保持高帧率,优于其他YOLO版本。论文和代码已开源。核心代码展示了AIFI Transformer层,用于位置嵌入。更多详情见[YOLOv8专栏](https://blog.csdn.net/shangyanaf/category_12303415.html)。
|
7月前
|
机器学习/深度学习 算法 计算机视觉
5.2 单阶段目标检测模型YOLOv3
这篇文章详细介绍了单阶段目标检测模型YOLOv3的基本原理和网络结构,包括如何生成候选区域、锚框的设计、预测框的生成以及如何对这些候选区域进行标注,并通过卷积神经网络进行特征提取和预测。
|
机器学习/深度学习 数据可视化 计算机视觉
详细解读 | 如何让你的DETR目标检测模型快速收敛(一)
详细解读 | 如何让你的DETR目标检测模型快速收敛(一)
616 0
|
计算机视觉 异构计算
目标检测系列 | 无NMS的端到端目标检测模型,超越OneNet,FCOS等SOTA!(二)
目标检测系列 | 无NMS的端到端目标检测模型,超越OneNet,FCOS等SOTA!(二)
190 0
|
算法 计算机视觉
目标检测系列 | 无NMS的端到端目标检测模型,超越OneNet,FCOS等SOTA!(一)
目标检测系列 | 无NMS的端到端目标检测模型,超越OneNet,FCOS等SOTA!(一)
345 0

相关实验场景

更多