【一日一技】超简单的Pandas数据筛选方法

简介: 【一日一技】超简单的Pandas数据筛选方法
import pandas as pd
datas = [
{'name': '王小一', 'hight': 171, 'weight': 100},
{'name': '李小二', 'hight': 163, 'weight': 200},
{'name': '张小三', 'hight': 152, 'weight': 67},
{'name': '郭小四', 'hight': 148, 'weight': 77},
{'name': '钱小五', 'hight': 189, 'weight': 87},
{'name': '孙小六', 'hight': 155, 'weight': 82},
{'name': '周小七', 'hight': 169, 'weight': 74},
{'name': '吴小八', 'hight': 170, 'weight': 68},
{'name': '郑小九', 'hight': 173, 'weight': 65},
{'name': '冯老十', 'hight': 175, 'weight': 64}
]

df = pd.DataFrame(datas)


运行效果图


现在想要筛选hight字段大于160的所有数据

代码可以这样写:

df[160< df['hight']]


运行效果图


现在想筛选所有 160 < hight < 170的数据


如果使用Python的链式比对,就会导致报错:


报错图


此时,代码需要改写为很难看的一种样式:

df[(160< df['hight']) & (df['hight'] <170)]

运行效果图


这样写虽然能够解决问题,但是代码可读性不好。

为了提高可读性,可以使用pandas自带的.query方法

当我们要查询hight > 160的数据时,可以这样写:

df.query('hight>160')

运行效果图


当我们要查询160 < hight < 170的时候,可以这样写:

df.query('160<hight<170')


运行效果图


甚至还支持多个参数链式查询,例如筛选所有160<hight<170并且weight<80的数据:

df.query('160<hight<170').query('weight<80')


运行效果图

目录
相关文章
|
19天前
|
监控 物联网 数据处理
Pandas高级数据处理:数据流式计算
本文介绍了如何使用 Pandas 进行流式数据处理。流式计算能够实时处理不断流入的数据,适用于金融交易、物联网监控等场景。Pandas 虽然主要用于批处理,但通过分块读取文件、增量更新 DataFrame 和使用生成器等方式,也能实现简单的流式计算。文章还详细讨论了内存溢出、数据类型不一致、数据丢失或重复及性能瓶颈等常见问题的解决方案,并建议在处理大规模数据时使用专门的流式计算框架。
146 100
Pandas高级数据处理:数据流式计算
|
1月前
|
数据采集 存储 供应链
Pandas数据应用:库存管理
本文介绍Pandas在库存管理中的应用,涵盖数据读取、清洗、查询及常见报错的解决方法。通过具体代码示例,讲解如何处理多样数据来源、格式不一致、缺失值和重复数据等问题,并解决KeyError、ValueError等常见错误,帮助提高库存管理效率和准确性。
109 72
|
12天前
|
数据采集 数据可视化 数据处理
Pandas高级数据处理:数据仪表板制作
《Pandas高级数据处理:数据仪表板制作》涵盖数据清洗、聚合、时间序列处理等技巧,解决常见错误如KeyError和内存溢出。通过多源数据整合、动态数据透视及可视化准备,结合性能优化与最佳实践,助你构建响应快速、数据精准的商业级数据仪表板。适合希望提升数据分析能力的开发者。
65 31
|
8天前
|
消息中间件 数据挖掘 数据处理
Pandas高级数据处理:数据流式计算
在大数据时代,Pandas作为Python强大的数据分析库,在处理结构化数据方面表现出色。然而,面对海量数据时,如何实现高效的流式计算成为关键。本文探讨了Pandas在流式计算中的常见问题与挑战,如内存限制、性能瓶颈和数据一致性,并提供了详细的解决方案,包括使用`chunksize`分批读取、向量化操作及`dask`库等方法,帮助读者更好地应对大规模数据处理需求。
43 17
|
13天前
|
数据采集 并行计算 数据可视化
Pandas高级数据处理:数据报告生成实战指南
数据报告生成面临数据质量、计算性能、呈现形式和自动化等核心挑战。常见问题包括缺失值导致统计失真、内存溢出及可视化困难。解决方案涵盖数据清洗、分块处理、安全绘图模板等。通过模块化设计、异常处理机制和性能优化策略,如使用`category`类型、并行计算等,可大幅提升效率。最佳实践建议建立数据质量检查清单、版本控制和自动化测试框架,确保系统具备自适应能力,提升报告生成效率300%以上。
50 12
|
1月前
|
数据采集 供应链 数据可视化
Pandas数据应用:供应链优化
在当今全球化的商业环境中,供应链管理日益复杂。Pandas作为Python的强大数据分析库,能有效处理库存、物流和生产计划中的大量数据。本文介绍如何用Pandas优化供应链,涵盖数据导入、清洗、类型转换、分析与可视化,并探讨常见问题及解决方案,帮助读者在供应链项目中更加得心应手。
54 21
|
1月前
|
机器学习/深度学习 搜索推荐 数据挖掘
Pandas数据应用:广告效果评估
在数字化营销中,广告效果评估至关重要。Pandas作为Python的强大数据分析库,在处理广告数据时表现出色。本文介绍如何使用Pandas进行广告效果评估,涵盖数据读取、预览、缺失值处理、数据类型转换及常见报错解决方法,并通过代码案例详细解释。掌握这些技能,可为深入分析广告效果打下坚实基础。
48 17
|
3月前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
120 0
|
5月前
|
机器学习/深度学习 数据处理 Python
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
152 1
|
3月前
|
存储 数据挖掘 数据处理
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第26天】Python 是数据分析领域的热门语言,Pandas 库以其高效的数据处理功能成为数据科学家的利器。本文介绍 Pandas 在数据读取、筛选、分组、转换和合并等方面的高效技巧,并通过示例代码展示其实际应用。
88 2