导语
1910年,教育家弗莱克斯纳(Abraham Flexner)发布了一份革新医学教育的报告,他认为医学教育应该向专业化、高水平并与基础科学研究相结合的方向发展。随后,学术性医学中心加大了对基础科学研究的重视,医学的粗放大为改观,满头白发的医生在很多时候甚至成了专业技术的代名词。
AI辅助精准医疗
基础科学研究对现代医学的贡献有目共睹。例如,人们以前一直认为胃溃疡的发生多是由于患者的压力过大,直到最近几年才意识到幽门螺旋杆菌在胃溃疡的发病过程中扮演了关键角色,医生也在此基础上全面革新了胃溃疡的治疗方案。
但其实,传统医疗仍旧依赖医生的个人经验,犹如人工寻路般效果参差不齐。目前的疾病分类主要基于症状、病变组织和细胞镜检以及其他实验室和影像学技术,不同疾病依据上述手段贡献的数据而被划入不同的范围,对不同病症的精细分析至少在目前仍然做得不够。
新近发展的人工智能技术为这些问题的解决带来了希望。人工智能与精准医疗深度融合,专家经验和新的辅助诊断技术有机结合,将成为临床医学的高精度导航系统,为医生提供自动指引,帮助医疗决策更快更准,实现重大疾病的可量化、可计算、可预测、可防治。
预计未来三年,以人为中心的精准医疗将成为主要方向,人工智能将全面渗透在疾病预防和诊疗的各个环节,成为疾病预防和诊疗的高精度导航协同。
应用趋势解读
传统医学方法在疾病的早筛、诊断、预后、治疗中存在局限性,体现在确诊准确率和诊疗效率、精度和效果等多方面。人工智能有望将医疗专家的经验和新的辅助诊断技术有机结合,在满足临床设计目标的基础上不断进化,凭借良好的人机交互能力,与医生协同互信,真正成为医生不可或缺的帮手。
人工智能技术已被证明可与基因检测、靶向治疗、免疫治疗等新技术研究有效结合,改变了单纯依赖医生经验的诊断模式,以肿瘤为例:在早筛和确诊环节,人工智能技术的应用从单一癌种走向全癌种的精准早筛。使用人工智能影像分析,医生可找到癌细胞的踪迹,改变传统仅用肉眼观测癌细胞的诊断模式。通过对样本大数据做标志物的整合和分析,可实现大批量人群的自动化筛查。同时,人工智能还能自动生成多模态放射病理诊断和综合评估报告,辅助医生决策,提升癌症早诊率、治疗率,降低恶性肿瘤的死亡率。根据英美国家的统计,使用人工智能技术做乳腺癌的早期筛查,阳性误诊率分别降低了5.7%(美国)和1.2%(英国)。
在治疗环节,人工智能技术将改善传统癌症治疗方式,对肿瘤的处理不再是简单的手术切除与否,而是可以明确是否复发、转移,做到比肉眼看得更准,让治疗过程透明简单。基于临床数据的分析,人工智能在放疗与化疗的个体情况检测和靶向用药方面也将发挥关键作用。此外,人工智能将在肿瘤特异性免疫治疗过程中,持续提升预测抗原的精度。特异性的细胞免疫治疗是最具潜力的肿瘤治疗方法,需要通过肿瘤特异性识别来做抗原预测,人工智能代替人工实验来筛选海量的异常抗原肽和免疫细胞受体的空间结构,完成医生无法完成的工作。
在预后环节,人工智能技术改变了以往单纯依赖专家经验的预测方式,实现了基于临床数据指征的精确计算,能够指引预后,降低风险。
高精度医疗导航的主要挑战是标准化、规范性和可解释性,可解释性是建立人工智能和医生的互信关系、推动产业化的先决条件。
结语
未来三年,以人为中心的精准医疗将成为主要方向,全面渗透在疾病预防和诊疗的各个环节,成为疾病预防和诊疗的高精度导航协同。而随着因果推理的进一步发展,可解释性有望实现突破,人工智能将为疾病的预防和早诊早治提供有力的技术支撑。
来源:达摩院DAMO
编辑:阿里云研究院市场活动主管 马骏驰