Kotlin | Flow数据流的几种使用场景

简介: Flow数据流的几种使用场景及其注意事项

一 Flow使用注意事项

多个Flow不能放到一个lifecycleScope.launch里去collect{},因为进入collect{}相当于一个死循环,下一行代码永远不会执行;如果就想写到一个lifecycleScope.launch{}里去,可以在内部再开启launch{}子协程去执行。

示例,下面是错误写法

  //NOTE: 下面的示例是错误写法
  lifecycleScope.launch { 
        mFlowModel.caseFlow1
            .flowWithLifecycle(lifecycle, Lifecycle.State.STARTED)
            .collect {}

        mFlowModel.caseFlow2
            .flowWithLifecycle(lifecycle, Lifecycle.State.STARTED)
            .collect {}
  }

正确写法:

  lifecycleScope.launch {
        launch {
            mFlowModel.caseFlow1
                .flowWithLifecycle(lifecycle, Lifecycle.State.STARTED)
                .collect {}
       }

        launch {
            mFlowModel.caseFlow2
                .flowWithLifecycle(lifecycle, Lifecycle.State.STARTED)
                .collect {}
        }
    }

当然,直接启动多个 lifecycleScope.launch也是可以的。

二 几种使用场景

2.1、处理复杂、耗时逻辑

一般在处理复杂逻辑、耗时操作时,我们会将其放到子线程中去处理,避免在主线程中处理导致卡顿。而Flow可以方便地进行线程切换,所以处理复杂逻辑、耗时操作时,可以考虑使用Flow来进行处理,下面来看一个例子:

假设我们想读取本地Assets目录下的person.json文件,并将其解析出来,json文件中的内容

// assets目录下person.json
{
    "name": "小马快跑",
    "age": 18,
    "interest": "money! lots of money!"
}

下面通过Flow的方式实现在IO线程中读取json文件,并最终在主线程中输出结果:

/**
 * 通过Flow方式,获取本地文件
 */
 private fun getFileInfo() {
      lifecycleScope.launch {
            flow {
                //解析本地json文件,并生成对应字符串
                val configStr = getAssetJsonInfo(requireContext(), "person.json")
                //最后将得到的实体类发送到下游
                emit(configStr)
            }
                .map { json ->
                    Gson().fromJson(json, PersonModel::class.java) //通过Gson将字符串转为实体类
                }
                .flowOn(Dispatchers.IO) //在flowOn之上的所有操作都是在IO线程中进行的
                .onStart { log("onStart") }
                .filterNotNull()
                .onCompletion { log("onCompletion") }
                .catch { ex -> log("catch:${ex.message}") }
                .collect {
                    log("collect parse result:$it")
                }
        }
  }

/**
 * 读取Assets下的json文件
 */
private fun getAssetJsonInfo(context: Context, fileName: String): String {
        val strBuilder = StringBuilder()
        var input: InputStream? = null
        var inputReader: InputStreamReader? = null
        var reader: BufferedReader? = null
        try {
            input = context.assets.open(fileName, AssetManager.ACCESS_BUFFER)
            inputReader = InputStreamReader(input, StandardCharsets.UTF_8)
            reader = BufferedReader(inputReader)
            var line: String?
            while ((reader.readLine().also { line = it }) != null) {
                strBuilder.append(line)
            }
        } catch (ex: Exception) {
            ex.printStackTrace()
        } finally {
            try {
                input?.close()
                inputReader?.close()
                reader?.close()
            } catch (e: IOException) {
                e.printStackTrace()
            }
        }
    return strBuilder.toString()
}

执行结果:

11:11:32.178  E  onStart
11:11:32.197  E  collect parse result:PersonModel(name=小马快跑, age=18, interest=money! lots of money!)
11:11:32.198  E  onCompletion

可以看到在collect{}中得到了正确的数据,这里注意一下flowOn()的作用域是在自身之上的操作,上述例子中flowOn(Dispatchers.IO) 意味着在flowOn之上的所有操作都是在IO线程中进行的。

2.2、存在依赖关系的接口请求

如果最终展示依赖多个接口且接口之间是有依赖关系的,之前我们可能会在第一个接口请求成功的回调里继续调用第二个接口,以此类推,这样虽然能实现,但是会导致回调层级很深,也就是所谓的回调地狱;此时可以使用FlowflatMapConcat将多个接口串联起来。

lifecycleScope.launch {
     lifecycle.repeatOnLifecycle(Lifecycle.State.STARTED) {
                 //将两个flow串联起来 先搜索目的地,然后到达目的地
                mFlowModel.getSearchFlow()
                    .flatMapConcat {
                        //第二个flow依赖第一个的结果
                        mFlowModel.goDestinationFlow(it)
                    }.collect {
                        mTvCallbackFlow.text = it ?: "error"
                    }
     }
}

2.3、组合多个接口的数据

有这样一种场景:数据的最终展示依赖多个接口请求到的数据,有两种实现方式:

  • 一个个串行去请求接口,拿到数据后最终拼到一起;
  • 所有接口并行去请求,拿到数据后最终拼到一起。

串行请求虽然可以,但是效率并不高;更优的方式是采用接口并行,可以使用Flowzip操作符,如下要获取电费、水费、网费的总花销,对应的花费需要各自请求自己的接口,最终把数据进行合并统计:

  //ViewModel中
  //分别请求电费、水费、网费,Flow之间是并行关系
  suspend fun requestElectricCost(): Flow<ExpendModel> =
        flow {
            delay(500)
            emit(ExpendModel("电费", 10f, 500))
        }.flowOn(Dispatchers.IO)

  suspend fun requestWaterCost(): Flow<ExpendModel> =
        flow {
            delay(1000)
            emit(ExpendModel("水费", 20f, 1000))
        }.flowOn(Dispatchers.IO)

  suspend fun requestInternetCost(): Flow<ExpendModel> =
        flow {
            delay(2000)
            emit(ExpendModel("网费", 30f, 2000))
        }.flowOn(Dispatchers.IO)

  data class ExpendModel(val type: String, val cost: Float, val apiTime: Int) {
    fun info(): String {
        return "${type}: ${cost}, 接口请求耗时约$apiTime ms"
    }
}
    //UI层
    mBtnZip.setOnClickListener {
        lifecycleScope.launch {
            val electricFlow = mFlowModel.requestElectricCost()
            val waterFlow = mFlowModel.requestWaterCost()
            val internetFlow = mFlowModel.requestInternetCost()

            val builder = StringBuilder()
            var totalCost = 0f
            val startTime = System.currentTimeMillis()
            //NOTE:注意这里可以多个zip操作符来合并Flow,且多个Flow之间是并行关系
            electricFlow.zip(waterFlow) { electric, water ->
                totalCost = electric.cost + water.cost
                builder.append("${electric.info()},\n").append("${water.info()},\n")
            }.zip(internetFlow) { two, internet ->
                totalCost += internet.cost
                two.append(internet.info()).append(",\n\n总花费:$totalCost")
            }.collect {
                mTvZipResult.text = it.append(",总耗时:${System.currentTimeMillis() - startTime} ms")
            }
        }
    }

执行结果:

电费: 10.0, 接口请求耗时约500 ms,
水费: 20.0, 接口请求耗时约1000 ms,
网费: 30.0, 接口请求耗时约2000 ms,
                 
总花费:60.0,总耗时:2012 ms

可以看到不但得到了所有接口的数据,而且总耗时基本等于耗时最长的接口的时间,说明zip操作符合并的多个Flow内部接口请求是并行的。

相关文章
|
3月前
|
缓存 数据处理 Android开发
Android经典实战之Kotlin常用的 Flow 操作符
本文介绍 Kotlin 中 `Flow` 的多种实用操作符,包括转换、过滤、聚合等,通过简洁易懂的例子展示了每个操作符的功能,如 `map`、`filter` 和 `fold` 等,帮助开发者更好地理解和运用 `Flow` 来处理异步数据流。
138 4
|
2月前
|
数据处理 开发者 Kotlin
利用Kotlin Flow简化数据流管理
随着移动端应用的复杂化,数据流管理成为一大挑战。Kotlin Flow作为一种基于协程的响应式编程框架,可简化数据流处理并支持背压机制,有效避免应用崩溃。本文通过解答四个常见问题,详细介绍Kotlin Flow的基本概念、创建方法及复杂数据流处理技巧,帮助开发者轻松上手,提升应用性能。
69 16
|
2月前
|
存储 API 数据库
Kotlin协程与Flow的魅力——打造高效数据管道的不二法门!
在现代Android开发中,Kotlin协程与Flow框架助力高效管理异步操作和数据流。协程采用轻量级线程管理,使异步代码保持同步风格,适合I/O密集型任务。Flow则用于处理数据流,支持按需生成数据和自动处理背压。结合两者,可构建复杂数据管道,简化操作流程,提高代码可读性和可维护性。本文通过示例代码详细介绍其应用方法。
49 2
|
2月前
|
数据处理 Kotlin
掌握这项Kotlin技能,让你的数据流管理不再头疼!Flow的秘密你解锁了吗?
【9月更文挑战第12天】随着移动应用发展,数据流管理日益复杂。Kotlin Flow作为一种基于协程的异步数据流处理框架应运而生,它可解耦数据的生产和消费过程,简化数据流管理,并支持背压机制以防应用崩溃。本文通过四个问题解析Kotlin Flow的基础概念、创建方式、复杂数据流处理及背压实现方法,助您轻松掌握这一高效工具,在实际开发中更从容地应对各种数据流挑战,提升应用性能。
49 8
|
2月前
|
数据处理 API 数据库
揭秘Kotlin Flow:迈向响应式编程的黄金钥匙
【9月更文挑战第11天】在现代软件开发中,异步编程与数据处理对于构建高性能应用至关重要。Kotlin Flow作为协程库的一部分,提供了简洁高效的API来处理数据流。本文将通过实例引导你从零开始学习Kotlin Flow,掌握构建响应式应用的方法。Flow是一种冷流,仅在订阅时才开始执行,支持map、filter等操作符,简化数据处理。
43 7
|
2月前
|
存储 数据处理 Kotlin
Kotlin Flow背后的神秘力量:背压、缓冲与合并策略的终极揭秘!
【9月更文挑战第13天】Kotlin Flow 是 Kotlin 协程库中处理异步数据流的强大工具,本文通过对比传统方法,深入探讨 Flow 的背压、缓冲及合并策略。背压通过 `buffer` 函数控制生产者和消费者的速率,避免过载;缓冲则允许数据暂存,使消费者按需消费;合并策略如 `merge`、`combine` 和 `zip` 则帮助处理多数据源的整合。通过这些功能,Flow 能更高效地应对复杂数据处理场景。
89 2
|
2月前
|
移动开发 定位技术 Android开发
「揭秘高效App的秘密武器」:Kotlin Flow携手ViewModel,打造极致响应式UI体验,你不可不知的技术革新!
【9月更文挑战第12天】随着移动开发领域对响应式编程的需求增加,管理应用程序状态变得至关重要。Jetpack Compose 和 Kotlin Flow 的组合提供了一种优雅的方式处理 UI 状态变化,简化了状态管理。本文探讨如何利用 Kotlin Flow 增强 ViewModel 功能,构建简洁强大的响应式 UI。
46 3
|
2月前
|
数据库 Kotlin
Kotlin中的冷流和热流以及如何让Flow停下来
本文介绍了Kotlin中`Flow`的概念及其类型,包括冷流(Cold Flow)、热流`SharedFlow`及具有最新值的`StateFlow`。文中详细描述了每种类型的特性与使用场景,并提供了停止`Flow`的方法,如取消协程、使用操作符过滤及异常处理。通过示例代码展示了如何运用这些概念。
99 2
|
2月前
|
API 数据处理 数据库
掌握 Kotlin Flow 的艺术:让无限数据流处理变得优雅且高效 —— 实战教程揭秘如何在数据洪流中保持代码的健壮与灵活
Kotlin Flow 是一个强大的协程 API,专为处理异步数据流设计。它适合处理网络请求数据、监听数据库变化等场景。本文通过示例代码展示如何使用 Kotlin Flow 管理无限流,如实时数据流。首先定义了一个生成无限整数的流 `infiniteNumbers()`,然后结合多种操作符(如 `buffer`、`onEach`、`scan`、`filter`、`takeWhile` 和 `collectLatest`),实现对无限流的优雅处理,例如计算随机数的平均值并在超过阈值时停止接收新数据。这展示了 Flow 在资源管理和逻辑清晰性方面的优势。
61 0
|
1月前
|
JSON 调度 数据库
Android面试之5个Kotlin深度面试题:协程、密封类和高阶函数
本文首发于公众号“AntDream”,欢迎微信搜索“AntDream”或扫描文章底部二维码关注,和我一起每天进步一点点。文章详细解析了Kotlin中的协程、扩展函数、高阶函数、密封类及`inline`和`reified`关键字在Android开发中的应用,帮助读者更好地理解和使用这些特性。
20 1