《数据分析实战:基于EXCEL和SPSS系列工具的实践》——导读

简介:


image

前  言

为什么要写这本书

在我做数据分析培训和咨询的过程中,经常会有学员来问我,有没有合适的统计分析方面的参考书可以推荐。被学员问得多了,慢慢地就有了写本书的冲动,一是毕竟自己写的书和培训的内容比较配套,二是写书对自己来说也是一个总结和提高的过程吧。

“理想很丰满,现实很骨感”,原来觉得自己手里有不少案例,各种工具的使用也算是比较熟练,写起书来应该得心应手,进度也会比较快,但是真到开始动手写作时,才发现并不是那么简单。从框架目录的确定、章节内容的选择、语言风格的打磨,到分析结果截图的选择等,每一个环节都需要细细地思量和斟酌。这本书的写作使我从2016年4月到11月的这段时间非常疲劳,颈椎病也复发了,因为在写书的同时,我的数据分析方面的培训并没有停止。

我在写作本书的时候,给自己规定了几个原则:

一是要实用,要能够解决企业工作中的实际问题

二是要尽可能地降低读者上手的难度,那种操作非常繁复、需要强大坚实的统计分析理论基础,或者需要编程才能实现的功能,我都没有放在本书中。原因很简单,即使本书讲了那些难度比较大的内容,读者也很难真正应用起来。

三是语言风格尽可能轻松活泼一点,尽量避免很严肃、很晦涩的专业术语,我很难做到“寓教于乐”,但还是尽己所能让本书的阅读轻松一点吧。

在本书的写作过程中,我经常提醒自己这三条原则,并且要求自己遵守它们。

简言之,给读者带来一本“有用的、上手比较容易的、读起来比较轻松的”数据分析书,这就是我写这本书的原则和动力。

目  录

[第1章 什么是数据分析
1.1 一眼就看到结论还需要数据分析吗](https://yq.aliyun.com/articles/118532/)
1.1.1 企业数据量
1.1.2 数据复杂度
1.1.3 数据颗粒度
1.2 数据分析能给我们带来什么
1.2.1 了解数据的整体状况
1.2.2 快速查询数据
1.2.3 数据之间关系的探索
1.2.4 业务预测
1.3 数据分析的几大抓手
1.3.1 足够多的数据
1.3.2 数据质量
1.3.3 合适的工具
1.3.4 分析结果的呈现
1.4 数据分析的流程
1.4.1 数据采集
1.4.2 数据整理
1.4.3 制表
1.4.4 数据分析
1.4.5 数据展示(呈现)
1.5 如何成为数据分析高手
1.5.1 “拳不离手,曲不离口”
1.5.2 熟练掌握常用工具
1.5.3 最好能编点程序
1.5.4 一定要通晓业务
[第2章 数据分析的理论、工具、模型
2.1 基本概念和术语](https://yq.aliyun.com/articles/118578/)
2.1.1 基本概念
2.1.2 术语
2.2 选择称手的软件工具
2.2.1 EXCEL
2.2.2 VBA
2.2.3 Access
2.2.4 SPSS
2.2.5 XLSTAT
2.2.6 Modeler
2.2.7 R语言
2.3 在分析需求和模型之间搭起桥梁
2.3.1 识别需求
2.3.2 分解需求
2.3.3 选择工具和模型
[第3章 数据采集与整理
3.1 数据采集的几条重要原则](https://yq.aliyun.com/articles/118590/)
3.1.1 要足够“复杂”
3.1.2 要足够“细”
3.1.3 要有“跨度”
3.1.4 要有可行性
3.2 用“逐步推进法”推测需要的数据
3.3 耗时耗力的数据整理过程
3.3.1 重复、空行、空列数据删除
3.3.2 缺失值的填充和分析
3.3.3 数据间逻辑的排查
3.4 数据量太大了怎么办
3.4.1 放到数据库中处理
3.4.2 用专业工具处理
3.4.3 数据抽样

相关文章
|
1月前
|
SQL 分布式计算 数据挖掘
从Excel到高级工具:数据分析进阶指南
从Excel到高级工具:数据分析进阶指南
137 54
|
19天前
|
SQL 存储 缓存
基于 StarRocks + Iceberg,TRM Labs 构建 PB 级数据分析平台实践
从 BigQuery 到开放数据湖,区块链情报公司 TRM Labs 的数据平台演进实践
|
27天前
|
人工智能 算法 安全
使用CodeBuddy实现批量转换PPT、Excel、Word为PDF文件工具
通过 CodeBuddy 实现本地批量转换工具,让复杂的文档处理需求转化为 “需求描述→代码生成→一键运行” 的极简流程,真正实现 “技术为效率服务” 的目标。感兴趣的快来体验下把
69 10
|
25天前
|
机器学习/深度学习 数据采集 数据可视化
Python数据分析,别再死磕Excel了!
Python数据分析,别再死磕Excel了!
69 2
|
4月前
|
分布式计算 大数据 数据处理
从Excel到大数据:别让工具限制你的思维!
从Excel到大数据:别让工具限制你的思维!
221 85
|
2月前
|
SQL 自然语言处理 数据可视化
📊 Quick BI 真实体验评测:小白也能快速上手的数据分析工具!
作为一名软件开发工程师,我体验了阿里云的Quick BI工具。从申请试用账号到上传数据、创建数据集,再到搭建仪表板和使用智能小Q功能,整个过程流畅且简单易用。尤其对非专业数据分析人士来说,拖拽式设计和自然语言问数功能极大降低了操作门槛。虽然在试用入口明显度和复杂语义理解上还有提升空间,但整体体验令人满意。Quick BI让我改变了对数据分析的认知,值得推荐给需要快速制作报表的团队成员。
|
6月前
|
人工智能 自然语言处理 Java
FastExcel:开源的 JAVA 解析 Excel 工具,集成 AI 通过自然语言处理 Excel 文件,完全兼容 EasyExcel
FastExcel 是一款基于 Java 的高性能 Excel 处理工具,专注于优化大规模数据处理,提供简洁易用的 API 和流式操作能力,支持从 EasyExcel 无缝迁移。
1293 65
FastExcel:开源的 JAVA 解析 Excel 工具,集成 AI 通过自然语言处理 Excel 文件,完全兼容 EasyExcel
|
4月前
|
SQL JSON 数据可视化
基于 DIFY 的自动化数据分析实战
本文介绍如何使用DIFY搭建数据分析自动化流程,实现从输入需求到查询数据库、LLM分析再到可视化输出的全流程。基于经典的employees数据集和DIFY云端环境,通过LLM-SQL解析、SQL执行、LLM数据分析及ECharts可视化等模块,高效完成数据分析任务。此方案适用于人力资源分析、薪酬管理等数据密集型业务,显著提升效率并降低成本。
8972 15
|
3月前
|
人工智能 数据可视化 前端开发
Probly:开源 AI Excel表格工具,交互式生成数据分析结果与可视化图表
Probly 是一款结合电子表格功能与 Python 数据分析能力的 AI 工具,支持在浏览器中运行 Python 代码,提供交互式电子表格、数据可视化和智能分析建议,适合需要强大数据分析功能又希望操作简便的用户。
471 2
|
4月前
|
存储 分布式计算 大数据
基于阿里云大数据平台的实时数据湖构建与数据分析实战
在大数据时代,数据湖作为集中存储和处理海量数据的架构,成为企业数据管理的核心。阿里云提供包括MaxCompute、DataWorks、E-MapReduce等在内的完整大数据平台,支持从数据采集、存储、处理到分析的全流程。本文通过电商平台案例,展示如何基于阿里云构建实时数据湖,实现数据价值挖掘。平台优势包括全托管服务、高扩展性、丰富的生态集成和强大的数据分析工具。

热门文章

最新文章