基于STM32智能雨刷器
功能演示
https://player.youku.com/embed/XNTg0OTQ1NzE4OA==
基于STM32的智能雨刷器
所用物料
- STM32
- 雨滴传感器
- SG90舵机
所用知识
- 中段
- PWM
- ADC
基本步骤
雨滴传感器使用ADC传输给stm32,stm32实时检测雨滴信号,然后根据判断控制PWM来实现舵机的不同动作,按键触发中断控制PWM
代码
主函数
main.c
#include "led.h" #include "delay.h" #include "key.h" #include "sys.h" #include "usart.h" #include "exti.h" #include "beep.h" #include "timer.h" #include "adc.h" int main(void) { u16 adcx; int i = 0;//用于舵机转动的for循环 int frequency = 175;//舵机转动的初始角度 175-195 float temp; //通过ADC转换获取雨滴传感器的值 int integer; delay_init(); //延时函数初始化 NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); //设置NVIC中断分组2:2位抢占优先级,2位响应优先级 uart_init(115200); //串口初始化为115200 LED_Init(); //初始化与LED连接的硬件接口 BEEP_Init(); //初始化蜂鸣器IO EXTIX_Init(); //初始化外部中断输入 LED0=0; //先点亮红灯 TIM3_PWM_Init(199,7199); //不分频。PWM频率=72000000/900=80Khz Adc_Init(); //ADC初始化 while(1) { adcx=Get_Adc_Average(ADC_Channel_1,2); temp=(float)adcx*(3.3/4096); temp*=100; integer = temp; if(integer > NUMERICAL_THREEHUNDRED && integer < NUMERICAL_FOURHUNDRED)//不下雨 { delay_ms(1); } if(integer > NUMERICAL_TWOHUNDREDANDTWENT && integer <= NUMERICAL_THREEHUNDRED)//小雨 { for(i = 0;i<20;i++) { TIM_SetCompare2(TIM3,frequency); frequency++; delay_ms(DELAYMIN); } for(i = 0;i<20;i++) { TIM_SetCompare2(TIM3,frequency); frequency--; delay_ms(DELAYMIN); } } if(integer > NUMERICAL_ONEHUNDREDANDFORTY && integer <= NUMERICAL_TWOHUNDREDANDTWENT)//中雨 { for(i = 0;i<20;i++) { TIM_SetCompare2(TIM3,frequency); frequency++; delay_ms(DELAYMID); } for(i = 0;i<20;i++) { TIM_SetCompare2(TIM3,frequency); frequency--; delay_ms(DELAYMID); } } if(integer > NUMERICAL_TEN && integer <= NUMERICAL_ONEHUNDREDANDFORTY)//大雨 { for(i = 0;i<20;i++) { TIM_SetCompare2(TIM3,frequency); frequency++; delay_ms(DELAYMAX); } for(i = 0;i<20;i++) { TIM_SetCompare2(TIM3,frequency); frequency--; delay_ms(DELAYMAX); } } //printf("%d\r\n",integer);//串口发送LOG值 //delay_ms(500); } }
雨滴传感器数据传输
ADC数模转换,将模拟信号转换成数字信号,以下是配置代码
代码下载链接(开源)https://download.csdn.net/download/m0_48216397/84200504
下面是各个代码简述
adc.h
#ifndef __ADC_H #define __ADC_H #include "sys.h" void Adc_Init(void); u16 Get_Adc(u8 ch); u16 Get_Adc_Average(u8 ch,u8 times); #endif
adc.c
#include "adc.h" #include "delay.h" //初始化ADC //这里仅以规则通道为例 //我们默认将开启通道0~3 void Adc_Init(void) { ADC_InitTypeDef ADC_InitStructure; GPIO_InitTypeDef GPIO_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA |RCC_APB2Periph_ADC1 , ENABLE ); //使能ADC1通道时钟 RCC_ADCCLKConfig(RCC_PCLK2_Div6); //设置ADC分频因子6 72M/6=12,ADC最大时间不能超过14M //PA1 作为模拟通道输入引脚 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN; //模拟输入引脚 GPIO_Init(GPIOA, &GPIO_InitStructure); ADC_DeInit(ADC1); //复位ADC1,将外设 ADC1 的全部寄存器重设为缺省值 ADC_InitStructure.ADC_Mode = ADC_Mode_Independent; //ADC工作模式:ADC1和ADC2工作在独立模式 ADC_InitStructure.ADC_ScanConvMode = DISABLE; //模数转换工作在单通道模式 ADC_InitStructure.ADC_ContinuousConvMode = DISABLE; //模数转换工作在单次转换模式 ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None; //转换由软件而不是外部触发启动 ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; //ADC数据右对齐 ADC_InitStructure.ADC_NbrOfChannel = 1; //顺序进行规则转换的ADC通道的数目 ADC_Init(ADC1, &ADC_InitStructure); //根据ADC_InitStruct中指定的参数初始化外设ADCx的寄存器 ADC_Cmd(ADC1, ENABLE); //使能指定的ADC1 ADC_ResetCalibration(ADC1); //使能复位校准 while(ADC_GetResetCalibrationStatus(ADC1)); //等待复位校准结束 ADC_StartCalibration(ADC1); //开启AD校准 while(ADC_GetCalibrationStatus(ADC1)); //等待校准结束 // ADC_SoftwareStartConvCmd(ADC1, ENABLE); //使能指定的ADC1的软件转换启动功能 } //获得ADC值 //ch:通道值 0~3 u16 Get_Adc(u8 ch) { //设置指定ADC的规则组通道,一个序列,采样时间 ADC_RegularChannelConfig(ADC1, ch, 1, ADC_SampleTime_239Cycles5 ); //ADC1,ADC通道,采样时间为239.5周期 ADC_SoftwareStartConvCmd(ADC1, ENABLE); //使能指定的ADC1的软件转换启动功能 while(!ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC ));//等待转换结束 return ADC_GetConversionValue(ADC1); //返回最近一次ADC1规则组的转换结果 } u16 Get_Adc_Average(u8 ch,u8 times) { u32 temp_val=0; u8 t; for(t=0;t<times;t++) { temp_val+=Get_Adc(ch); delay_ms(5); } return temp_val/times; }
PWM时钟配置
time.h
#ifndef __TIMER_H #define __TIMER_H #include "sys.h" void TIM3_Int_Init(u16 arr,u16 psc); void TIM3_PWM_Init(u16 arr,u16 psc); #endif
time.c
#include "timer.h" #include "led.h" #include "usart.h" //通用定时器3中断初始化 //这里时钟选择为APB1的2倍,而APB1为36M //arr:自动重装值。 //psc:时钟预分频数 //这里使用的是定时器3! void TIM3_Int_Init(u16 arr,u16 psc) { TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; NVIC_InitTypeDef NVIC_InitStructure; RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE); //时钟使能 TIM_TimeBaseStructure.TIM_Period = arr; //设置在下一个更新事件装入活动的自动重装载寄存器周期的值 计数到5000为500ms TIM_TimeBaseStructure.TIM_Prescaler =psc; //设置用来作为TIMx时钟频率除数的预分频值 10Khz的计数频率 TIM_TimeBaseStructure.TIM_ClockDivision = 0; //设置时钟分割:TDTS = Tck_tim TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; //TIM向上计数模式 TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure); //根据TIM_TimeBaseInitStruct中指定的参数初始化TIMx的时间基数单位 TIM_ITConfig(TIM3,TIM_IT_Update,ENABLE ); //使能指定的TIM3中断,允许更新中断 NVIC_InitStructure.NVIC_IRQChannel = TIM3_IRQn; //TIM3中断 NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; //先占优先级0级 NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3; //从优先级3级 NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //IRQ通道被使能 NVIC_Init(&NVIC_InitStructure); //根据NVIC_InitStruct中指定的参数初始化外设NVIC寄存器 TIM_Cmd(TIM3, ENABLE); //使能TIMx外设 } //定时器3中断服务程序 void TIM3_IRQHandler(void) //TIM3中断 { if (TIM_GetITStatus(TIM3, TIM_IT_Update) != RESET) //检查指定的TIM中断发生与否:TIM 中断源 { TIM_ClearITPendingBit(TIM3, TIM_IT_Update ); //清除TIMx的中断待处理位:TIM 中断源 LED1=!LED1; } } //TIM3 PWM部分初始化 //PWM输出初始化 //arr:自动重装值 //psc:时钟预分频数 void TIM3_PWM_Init(u16 arr,u16 psc) { GPIO_InitTypeDef GPIO_InitStructure; TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; TIM_OCInitTypeDef TIM_OCInitStructure; RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE); //使能定时器3时钟 RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB | RCC_APB2Periph_AFIO, ENABLE); //使能GPIO外设和AFIO复用功能模块时钟 GPIO_PinRemapConfig(GPIO_PartialRemap_TIM3, ENABLE); //Timer3部分重映射 TIM3_CH2->PB5 //设置该引脚为复用输出功能,输出TIM3 CH2的PWM脉冲波形 GPIOB.5 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5; //TIM_CH2 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; //复用推挽输出 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOB, &GPIO_InitStructure);//初始化GPIO GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5; //TIM_CH2 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; //复用推挽输出 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOE, &GPIO_InitStructure);//初始化GPIO //初始化TIM3 TIM_TimeBaseStructure.TIM_Period = arr; //设置在下一个更新事件装入活动的自动重装载寄存器周期的值 TIM_TimeBaseStructure.TIM_Prescaler =psc; //设置用来作为TIMx时钟频率除数的预分频值 TIM_TimeBaseStructure.TIM_ClockDivision = 0; //设置时钟分割:TDTS = Tck_tim TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; //TIM向上计数模式 TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure); //根据TIM_TimeBaseInitStruct中指定的参数初始化TIMx的时间基数单位 //初始化TIM3 Channel2 PWM模式 TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM2; //选择定时器模式:TIM脉冲宽度调制模式2 TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; //比较输出使能 TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; //输出极性:TIM输出比较极性高 TIM_OC2Init(TIM3, &TIM_OCInitStructure); //根据T指定的参数初始化外设TIM3 OC2 TIM_OC2PreloadConfig(TIM3, TIM_OCPreload_Enable); //使能TIM3在CCR2上的预装载寄存器 TIM_Cmd(TIM3, ENABLE); //使能TIM3 }
中断配置
exti.h
#ifndef __EXTI_H #define __EXIT_H #include "sys.h" void EXTIX_Init(void);//外部中断初始化 #endif
exti.c
#include "exti.h" #include "led.h" #include "key.h" #include "delay.h" #include "usart.h" #include "beep.h" void EXTIX_Init(void) { EXTI_InitTypeDef EXTI_InitStructure; NVIC_InitTypeDef NVIC_InitStructure; KEY_Init(); // 按键端口初始化 RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO,ENABLE); //使能复用功能时钟 //GPIOE.3 中断线以及中断初始化配置 下降沿触发 //KEY1 GPIO_EXTILineConfig(GPIO_PortSourceGPIOE,GPIO_PinSource3); EXTI_InitStructure.EXTI_Line=EXTI_Line3; EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt; EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Falling; EXTI_Init(&EXTI_InitStructure); //根据EXTI_InitStruct中指定的参数初始化外设EXTI寄存器 //GPIOE.4 中断线以及中断初始化配置 下降沿触发 //KEY0 GPIO_EXTILineConfig(GPIO_PortSourceGPIOE,GPIO_PinSource4); EXTI_InitStructure.EXTI_Line=EXTI_Line4; EXTI_Init(&EXTI_InitStructure); //根据EXTI_InitStruct中指定的参数初始化外设EXTI寄存器 //GPIOA.0 中断线以及中断初始化配置 上升沿触发 PA0 WK_UP GPIO_EXTILineConfig(GPIO_PortSourceGPIOA,GPIO_PinSource0); EXTI_InitStructure.EXTI_Line=EXTI_Line0; EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Rising; EXTI_Init(&EXTI_InitStructure); //根据EXTI_InitStruct中指定的参数初始化外设EXTI寄存器 NVIC_InitStructure.NVIC_IRQChannel = EXTI0_IRQn; //使能按键WK_UP所在的外部中断通道 NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0x02; //抢占优先级2, NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0x03; //子优先级3 NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //使能外部中断通道 NVIC_Init(&NVIC_InitStructure); NVIC_InitStructure.NVIC_IRQChannel = EXTI3_IRQn; //使能按键KEY1所在的外部中断通道 NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0x02; //抢占优先级2 NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0x01; //子优先级1 NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //使能外部中断通道 NVIC_Init(&NVIC_InitStructure); //根据NVIC_InitStruct中指定的参数初始化外设NVIC寄存器 NVIC_InitStructure.NVIC_IRQChannel = EXTI4_IRQn; //使能按键KEY0所在的外部中断通道 NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0x02; //抢占优先级2 NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0x00; //子优先级0 NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //使能外部中断通道 NVIC_Init(&NVIC_InitStructure); //根据NVIC_InitStruct中指定的参数初始化外设NVIC寄存器 } //外部中断0服务程序 void EXTI0_IRQHandler(void)//亮度最亮 { delay_ms(10);//消抖 if(WK_UP==1) //WK_UP按键 { for(i = 0;i<10;i++) { for(i = 0;i<20;i++) { TIM_SetCompare2(TIM3,frequency); frequency++; delay_ms(DELAYMIN); } for(i = 0;i<20;i++) { TIM_SetCompare2(TIM3,frequency); frequency--; delay_ms(DELAYMIN); } } delay_ms(1000); } EXTI_ClearITPendingBit(EXTI_Line0); //清除LINE0上的中断标志位 } //外部中断3服务程序 void EXTI3_IRQHandler(void)//亮度 { delay_ms(10);//消抖 if(KEY1==0) //按键KEY1 { for(i = 0;i<10;i++) { for(i = 0;i<20;i++) { TIM_SetCompare2(TIM3,frequency); frequency++; delay_ms(DELAYMIN); } for(i = 0;i<20;i++) { TIM_SetCompare2(TIM3,frequency); frequency--; delay_ms(DELAYMIN); } } delay_ms(1000); } EXTI_ClearITPendingBit(EXTI_Line3); //清除LINE3上的中断标志位 } void EXTI4_IRQHandler(void)//亮度在中间 { delay_ms(10);//消抖 if(KEY0==0) //按键KEY0 { for(i = 0;i<10;i++) { for(i = 0;i<20;i++) { TIM_SetCompare2(TIM3,frequency); frequency++; delay_ms(DELAYMIN); } for(i = 0;i<20;i++) { TIM_SetCompare2(TIM3,frequency); frequency--; delay_ms(DELAYMIN); } } delay_ms(1000); } EXTI_ClearITPendingBit(EXTI_Line4); //清除LINE4上的中断标志位 }
按键中断配置
key.h
#ifndef __KEY_H #define __KEY_H #include "sys.h" #define KEY0 GPIO_ReadInputDataBit(GPIOE,GPIO_Pin_4)//读取按键0 #define KEY1 GPIO_ReadInputDataBit(GPIOE,GPIO_Pin_3)//读取按键1 #define WK_UP GPIO_ReadInputDataBit(GPIOA,GPIO_Pin_0)//读取按键3(WK_UP) #define KEY0_PRES 1 //KEY0按下 #define KEY1_PRES 2 //KEY1按下 #define WKUP_PRES 3 //KEY_UP按下(即WK_UP/KEY_UP) void KEY_Init(void);//IO初始化 u8 KEY_Scan(u8); //按键扫描函数 #endif
key.c
#include "stm32f10x.h" #include "key.h" #include "sys.h" #include "delay.h" //按键初始化函数 void KEY_Init(void) //IO初始化 { GPIO_InitTypeDef GPIO_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA|RCC_APB2Periph_GPIOE,ENABLE);//使能PORTA,PORTE时钟 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4|GPIO_Pin_3;//KEY0-KEY1 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU; //设置成上拉输入 GPIO_Init(GPIOE, &GPIO_InitStructure);//初始化GPIOE4,3 //初始化 WK_UP-->GPIOA.0 下拉输入 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPD; //PA0设置成输入,默认下拉 GPIO_Init(GPIOA, &GPIO_InitStructure);//初始化GPIOA.0 }
时钟配置
sys.h
#ifndef __SYS_H #define __SYS_H #include "stm32f10x.h" //0,不支持ucos //1,支持ucos #define SYSTEM_SUPPORT_OS 0 //定义系统文件夹是否支持UCOS //位带操作,实现51类似的GPIO控制功能 //具体实现思想,参考<<CM3权威指南>>第五章(87页~92页). //IO口操作宏定义 #define BITBAND(addr, bitnum) ((addr & 0xF0000000)+0x2000000+((addr &0xFFFFF)<<5)+(bitnum<<2)) #define MEM_ADDR(addr) *((volatile unsigned long *)(addr)) #define BIT_ADDR(addr, bitnum) MEM_ADDR(BITBAND(addr, bitnum)) //IO口地址映射 #define GPIOA_ODR_Addr (GPIOA_BASE+12) //0x4001080C #define GPIOB_ODR_Addr (GPIOB_BASE+12) //0x40010C0C #define GPIOC_ODR_Addr (GPIOC_BASE+12) //0x4001100C #define GPIOD_ODR_Addr (GPIOD_BASE+12) //0x4001140C #define GPIOE_ODR_Addr (GPIOE_BASE+12) //0x4001180C #define GPIOF_ODR_Addr (GPIOF_BASE+12) //0x40011A0C #define GPIOG_ODR_Addr (GPIOG_BASE+12) //0x40011E0C #define GPIOA_IDR_Addr (GPIOA_BASE+8) //0x40010808 #define GPIOB_IDR_Addr (GPIOB_BASE+8) //0x40010C08 #define GPIOC_IDR_Addr (GPIOC_BASE+8) //0x40011008 #define GPIOD_IDR_Addr (GPIOD_BASE+8) //0x40011408 #define GPIOE_IDR_Addr (GPIOE_BASE+8) //0x40011808 #define GPIOF_IDR_Addr (GPIOF_BASE+8) //0x40011A08 #define GPIOG_IDR_Addr (GPIOG_BASE+8) //0x40011E08 //IO口操作,只对单一的IO口! //确保n的值小于16! #define PAout(n) BIT_ADDR(GPIOA_ODR_Addr,n) //输出 #define PAin(n) BIT_ADDR(GPIOA_IDR_Addr,n) //输入 #define PBout(n) BIT_ADDR(GPIOB_ODR_Addr,n) //输出 #define PBin(n) BIT_ADDR(GPIOB_IDR_Addr,n) //输入 #define PCout(n) BIT_ADDR(GPIOC_ODR_Addr,n) //输出 #define PCin(n) BIT_ADDR(GPIOC_IDR_Addr,n) //输入 #define PDout(n) BIT_ADDR(GPIOD_ODR_Addr,n) //输出 #define PDin(n) BIT_ADDR(GPIOD_IDR_Addr,n) //输入 #define PEout(n) BIT_ADDR(GPIOE_ODR_Addr,n) //输出 #define PEin(n) BIT_ADDR(GPIOE_IDR_Addr,n) //输入 #define PFout(n) BIT_ADDR(GPIOF_ODR_Addr,n) //输出 #define PFin(n) BIT_ADDR(GPIOF_IDR_Addr,n) //输入 #define PGout(n) BIT_ADDR(GPIOG_ODR_Addr,n) //输出 #define PGin(n) BIT_ADDR(GPIOG_IDR_Addr,n) //输入 //以下为汇编函数 void WFI_SET(void); //执行WFI指令 void INTX_DISABLE(void);//关闭所有中断 void INTX_ENABLE(void); //开启所有中断 void MSR_MSP(u32 addr); //设置堆栈地址 #endif
sys.c
#include "sys.h" //THUMB指令不支持汇编内联 //采用如下方法实现执行汇编指令WFI void WFI_SET(void) { __ASM volatile("wfi"); } //关闭所有中断 void INTX_DISABLE(void) { __ASM volatile("cpsid i"); } //开启所有中断 void INTX_ENABLE(void) { __ASM volatile("cpsie i"); } //设置栈顶地址 //addr:栈顶地址 __asm void MSR_MSP(u32 addr) { MSR MSP, r0 //set Main Stack value BX r14 }
延时函数配置
delay.h
#ifndef __DELAY_H #define __DELAY_H #include "sys.h" void delay_init(void); void delay_ms(u16 nms); void delay_us(u32 nus); #endif
delay.c
#include "delay.h" // //如果需要使用OS,则包括下面的头文件即可. #if SYSTEM_SUPPORT_OS #include "includes.h" //ucos 使用 #endif static u8 fac_us=0; //us延时倍乘数 static u16 fac_ms=0; //ms延时倍乘数,在ucos下,代表每个节拍的ms数 #if SYSTEM_SUPPORT_OS //如果SYSTEM_SUPPORT_OS定义了,说明要支持OS了(不限于UCOS). //当delay_us/delay_ms需要支持OS的时候需要三个与OS相关的宏定义和函数来支持 //首先是3个宏定义: // delay_osrunning:用于表示OS当前是否正在运行,以决定是否可以使用相关函数 //delay_ostickspersec:用于表示OS设定的时钟节拍,delay_init将根据这个参数来初始哈systick // delay_osintnesting:用于表示OS中断嵌套级别,因为中断里面不可以调度,delay_ms使用该参数来决定如何运行 //然后是3个函数: // delay_osschedlock:用于锁定OS任务调度,禁止调度 //delay_osschedunlock:用于解锁OS任务调度,重新开启调度 // delay_ostimedly:用于OS延时,可以引起任务调度. //本例程仅作UCOSII和UCOSIII的支持,其他OS,请自行参考着移植 //支持UCOSII #ifdef OS_CRITICAL_METHOD //OS_CRITICAL_METHOD定义了,说明要支持UCOSII #define delay_osrunning OSRunning //OS是否运行标记,0,不运行;1,在运行 #define delay_ostickspersec OS_TICKS_PER_SEC //OS时钟节拍,即每秒调度次数 #define delay_osintnesting OSIntNesting //中断嵌套级别,即中断嵌套次数 #endif //支持UCOSIII #ifdef CPU_CFG_CRITICAL_METHOD //CPU_CFG_CRITICAL_METHOD定义了,说明要支持UCOSIII #define delay_osrunning OSRunning //OS是否运行标记,0,不运行;1,在运行 #define delay_ostickspersec OSCfg_TickRate_Hz //OS时钟节拍,即每秒调度次数 #define delay_osintnesting OSIntNestingCtr //中断嵌套级别,即中断嵌套次数 #endif //us级延时时,关闭任务调度(防止打断us级延迟) void delay_osschedlock(void) { #ifdef CPU_CFG_CRITICAL_METHOD //使用UCOSIII OS_ERR err; OSSchedLock(&err); //UCOSIII的方式,禁止调度,防止打断us延时 #else //否则UCOSII OSSchedLock(); //UCOSII的方式,禁止调度,防止打断us延时 #endif } //us级延时时,恢复任务调度 void delay_osschedunlock(void) { #ifdef CPU_CFG_CRITICAL_METHOD //使用UCOSIII OS_ERR err; OSSchedUnlock(&err); //UCOSIII的方式,恢复调度 #else //否则UCOSII OSSchedUnlock(); //UCOSII的方式,恢复调度 #endif } //调用OS自带的延时函数延时 //ticks:延时的节拍数 void delay_ostimedly(u32 ticks) { #ifdef CPU_CFG_CRITICAL_METHOD OS_ERR err; OSTimeDly(ticks,OS_OPT_TIME_PERIODIC,&err); //UCOSIII延时采用周期模式 #else OSTimeDly(ticks); //UCOSII延时 #endif } //systick中断服务函数,使用ucos时用到 void SysTick_Handler(void) { if(delay_osrunning==1) //OS开始跑了,才执行正常的调度处理 { OSIntEnter(); //进入中断 OSTimeTick(); //调用ucos的时钟服务程序 OSIntExit(); //触发任务切换软中断 } } #endif //初始化延迟函数 //当使用OS的时候,此函数会初始化OS的时钟节拍 //SYSTICK的时钟固定为HCLK时钟的1/8 //SYSCLK:系统时钟 void delay_init() { #if SYSTEM_SUPPORT_OS //如果需要支持OS. u32 reload; #endif SysTick_CLKSourceConfig(SysTick_CLKSource_HCLK_Div8); //选择外部时钟 HCLK/8 fac_us=SystemCoreClock/8000000; //为系统时钟的1/8 #if SYSTEM_SUPPORT_OS //如果需要支持OS. reload=SystemCoreClock/8000000; //每秒钟的计数次数 单位为K reload*=1000000/delay_ostickspersec; //根据delay_ostickspersec设定溢出时间 //reload为24位寄存器,最大值:16777216,在72M下,约合1.86s左右 fac_ms=1000/delay_ostickspersec; //代表OS可以延时的最少单位 SysTick->CTRL|=SysTick_CTRL_TICKINT_Msk; //开启SYSTICK中断 SysTick->LOAD=reload; //每1/delay_ostickspersec秒中断一次 SysTick->CTRL|=SysTick_CTRL_ENABLE_Msk; //开启SYSTICK #else fac_ms=(u16)fac_us*1000; //非OS下,代表每个ms需要的systick时钟数 #endif } #if SYSTEM_SUPPORT_OS //如果需要支持OS. //延时nus //nus为要延时的us数. void delay_us(u32 nus) { u32 ticks; u32 told,tnow,tcnt=0; u32 reload=SysTick->LOAD; //LOAD的值 ticks=nus*fac_us; //需要的节拍数 tcnt=0; delay_osschedlock(); //阻止OS调度,防止打断us延时 told=SysTick->VAL; //刚进入时的计数器值 while(1) { tnow=SysTick->VAL; if(tnow!=told) { if(tnow<told)tcnt+=told-tnow; //这里注意一下SYSTICK是一个递减的计数器就可以了. else tcnt+=reload-tnow+told; told=tnow; if(tcnt>=ticks)break; //时间超过/等于要延迟的时间,则退出. } }; delay_osschedunlock(); //恢复OS调度 } //延时nms //nms:要延时的ms数 void delay_ms(u16 nms) { if(delay_osrunning&&delay_osintnesting==0) //如果OS已经在跑了,并且不是在中断里面(中断里面不能任务调度) { if(nms>=fac_ms) //延时的时间大于OS的最少时间周期 { delay_ostimedly(nms/fac_ms); //OS延时 } nms%=fac_ms; //OS已经无法提供这么小的延时了,采用普通方式延时 } delay_us((u32)(nms*1000)); //普通方式延时 } #else //不用OS时 //延时nus //nus为要延时的us数. void delay_us(u32 nus) { u32 temp; SysTick->LOAD=nus*fac_us; //时间加载 SysTick->VAL=0x00; //清空计数器 SysTick->CTRL|=SysTick_CTRL_ENABLE_Msk ; //开始倒数 do { temp=SysTick->CTRL; }while((temp&0x01)&&!(temp&(1<<16))); //等待时间到达 SysTick->CTRL&=~SysTick_CTRL_ENABLE_Msk; //关闭计数器 SysTick->VAL =0X00; //清空计数器 } //延时nms //注意nms的范围 //SysTick->LOAD为24位寄存器,所以,最大延时为: //nms<=0xffffff*8*1000/SYSCLK //SYSCLK单位为Hz,nms单位为ms //对72M条件下,nms<=1864 void delay_ms(u16 nms) { u32 temp; SysTick->LOAD=(u32)nms*fac_ms; //时间加载(SysTick->LOAD为24bit) SysTick->VAL =0x00; //清空计数器 SysTick->CTRL|=SysTick_CTRL_ENABLE_Msk ; //开始倒数 do { temp=SysTick->CTRL; }while((temp&0x01)&&!(temp&(1<<16))); //等待时间到达 SysTick->CTRL&=~SysTick_CTRL_ENABLE_Msk; //关闭计数器 SysTick->VAL =0X00; //清空计数器 } #endif
串口打log配置,可用可不用
usart.h
#ifndef __USART_H #define __USART_H #include "stdio.h" #include "sys.h" #define USART_REC_LEN 200 //定义最大接收字节数 200 #define EN_USART1_RX 1 //使能(1)/禁止(0)串口1接收 extern u8 USART_RX_BUF[USART_REC_LEN]; //接收缓冲,最大USART_REC_LEN个字节.末字节为换行符 extern u16 USART_RX_STA; //接收状态标记 //如果想串口中断接收,请不要注释以下宏定义 void uart_init(u32 bound); #endif
usart.c
#include "sys.h" #include "usart.h" // //如果使用ucos,则包括下面的头文件即可. #if SYSTEM_SUPPORT_OS #include "includes.h" //ucos 使用 #endif //加入以下代码,支持printf函数,而不需要选择use MicroLIB #if 1 #pragma import(__use_no_semihosting) //标准库需要的支持函数 struct __FILE { int handle; }; FILE __stdout; //定义_sys_exit()以避免使用半主机模式 void _sys_exit(int x) { x = x; } //重定义fputc函数 int fputc(int ch, FILE *f) { while((USART1->SR&0X40)==0);//循环发送,直到发送完毕 USART1->DR = (u8) ch; return ch; } #endif /*使用microLib的方法*/ /* int fputc(int ch, FILE *f) { USART_SendData(USART1, (uint8_t) ch); while (USART_GetFlagStatus(USART1, USART_FLAG_TC) == RESET) {} return ch; } int GetKey (void) { while (!(USART1->SR & USART_FLAG_RXNE)); return ((int)(USART1->DR & 0x1FF)); } */ #if EN_USART1_RX //如果使能了接收 //串口1中断服务程序 //注意,读取USARTx->SR能避免莫名其妙的错误 u8 USART_RX_BUF[USART_REC_LEN]; //接收缓冲,最大USART_REC_LEN个字节. //接收状态 //bit15, 接收完成标志 //bit14, 接收到0x0d //bit13~0, 接收到的有效字节数目 u16 USART_RX_STA=0; //接收状态标记 void uart_init(u32 bound){ //GPIO端口设置 GPIO_InitTypeDef GPIO_InitStructure; USART_InitTypeDef USART_InitStructure; NVIC_InitTypeDef NVIC_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1|RCC_APB2Periph_GPIOA, ENABLE); //使能USART1,GPIOA时钟 //USART1_TX GPIOA.9 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9; //PA.9 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; //复用推挽输出 GPIO_Init(GPIOA, &GPIO_InitStructure);//初始化GPIOA.9 //USART1_RX GPIOA.10初始化 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;//PA10 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;//浮空输入 GPIO_Init(GPIOA, &GPIO_InitStructure);//初始化GPIOA.10 //Usart1 NVIC 配置 NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=3 ;//抢占优先级3 NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3; //子优先级3 NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //IRQ通道使能 NVIC_Init(&NVIC_InitStructure); //根据指定的参数初始化VIC寄存器 //USART 初始化设置 USART_InitStructure.USART_BaudRate = bound;//串口波特率 USART_InitStructure.USART_WordLength = USART_WordLength_8b;//字长为8位数据格式 USART_InitStructure.USART_StopBits = USART_StopBits_1;//一个停止位 USART_InitStructure.USART_Parity = USART_Parity_No;//无奇偶校验位 USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;//无硬件数据流控制 USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx; //收发模式 USART_Init(USART1, &USART_InitStructure); //初始化串口1 USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);//开启串口接受中断 USART_Cmd(USART1, ENABLE); //使能串口1 } void USART1_IRQHandler(void) //串口1中断服务程序 { u8 Res; #if SYSTEM_SUPPORT_OS //如果SYSTEM_SUPPORT_OS为真,则需要支持OS. OSIntEnter(); #endif if(USART_GetITStatus(USART1, USART_IT_RXNE) != RESET) //接收中断(接收到的数据必须是0x0d 0x0a结尾) { Res =USART_ReceiveData(USART1); //读取接收到的数据 if((USART_RX_STA&0x8000)==0)//接收未完成 { if(USART_RX_STA&0x4000)//接收到了0x0d { if(Res!=0x0a)USART_RX_STA=0;//接收错误,重新开始 else USART_RX_STA|=0x8000; //接收完成了 } else //还没收到0X0D { if(Res==0x0d)USART_RX_STA|=0x4000; else { USART_RX_BUF[USART_RX_STA&0X3FFF]=Res ; USART_RX_STA++; if(USART_RX_STA>(USART_REC_LEN-1))USART_RX_STA=0;//接收数据错误,重新开始接收 } } } } #if SYSTEM_SUPPORT_OS //如果SYSTEM_SUPPORT_OS为真,则需要支持OS. OSIntExit(); #endif } #endif