【Medical & Transformer】论文阅读(极简版),可忽略该篇(写给自己)

简介: 【Medical & Transformer】论文阅读(极简版),可忽略该篇(写给自己)

复现的代码没看到。


Records



正常在TransformerQ中,都是通过线性变化来得到qk v的。

下图中的1x1,是因为作者没有用全连接,用的是1x1的卷积,这样做也是可以的。

3b9d73b855f440a4927690d9596e0abe.jpg


相对位置编码。倘若共有64号,在1号看来,有64个相对编码,2号看来也是有64个相对位置编码。


在—开始的时候,是通过随机初始化的方式,往后就是会更新的,相对位置编码是可学习的参数。

292aa97230fc422c901de82b2d3fece6.jpg


符号的意思是矩阵乘法。


45a0d48f2be64107a2e085745080ff6a.jpgac0b346253db417399912e922761eb18.jpg

相关文章
|
5月前
|
机器学习/深度学习 算法 网络架构
神经网络架构殊途同归?ICML 2024论文:模型不同,但学习内容相同
【8月更文挑战第3天】《神经语言模型的缩放定律》由OpenAI研究人员完成并在ICML 2024发表。研究揭示了模型性能与大小、数据集及计算资源间的幂律关系,表明增大任一资源均可预测地提升性能。此外,论文指出模型宽度与深度对性能影响较小,较大模型在更多数据上训练能更好泛化,且能高效利用计算资源。研究提供了训练策略建议,对于神经语言模型优化意义重大,但也存在局限性,需进一步探索。论文链接:[https://arxiv.org/abs/2001.08361]。
65 1
|
7月前
|
数据采集 人工智能 算法
视觉语言模型导论:这篇论文能成为你进军VLM的第一步
【6月更文挑战第20天】探索AI如何理解与生成图像和文本,VLM结合图像与文本映射,涉及图像描述、问答等任务。论文由多所名校和机构研究人员共创,介绍VLM历史、类型(对比学习、掩码、生成、预训练)及应用,如图像生成和问答。同时,讨论数据质量、计算资源和模型可解释性的挑战。[阅读更多](https://arxiv.org/pdf/2405.17247)
255 2
|
8月前
|
机器学习/深度学习 数据采集 自然语言处理
【传知代码】BERT论文解读及情感分类实战-论文复现
本文介绍了BERT模型的架构和技术细节,包括双向编码器、预训练任务(掩码语言模型和下一句预测)以及模型微调。文章还提供了使用BERT在IMDB数据集上进行情感分类的实战,包括数据集处理、模型训练和评估,测试集准确率超过93%。BERT是基于Transformer的预训练模型,适用于多种NLP任务。在实践中,BERT模型加载预训练权重,对输入数据进行预处理,然后通过微调适应情感分类任务。
466 0
【传知代码】BERT论文解读及情感分类实战-论文复现
|
机器学习/深度学习 Shell 数据处理
深度学习原理篇 第九章:UP-DETR
简要介绍UP-DETR的原理和代码实现。
264 0
|
机器学习/深度学习 自然语言处理 机器人
Transformer - 李宏毅笔记
Transformer - 李宏毅笔记
301 0
|
机器学习/深度学习 人工智能 自然语言处理
LeCun 70页长篇巨作!自监督学习「葵花宝典」,手把手教你学会
LeCun 70页长篇巨作!自监督学习「葵花宝典」,手把手教你学会
232 0
|
机器学习/深度学习 人工智能 自然语言处理
史上最全Transformer合集!LeCun力推:给60个模型建目录,哪篇论文你错过了?
史上最全Transformer合集!LeCun力推:给60个模型建目录,哪篇论文你错过了?
414 0
|
机器学习/深度学习 自然语言处理 安全
不可错过!普林斯顿陈丹琦最新《大语言模型理解》2022课程!全面讲述BERT、GPT、T5等大模型,附Slides
不可错过!普林斯顿陈丹琦最新《大语言模型理解》2022课程!全面讲述BERT、GPT、T5等大模型,附Slides
282 0
|
机器学习/深度学习 算法
一篇文章读懂人工神经网络
人工神经网络(ANN)是通过中神经元的信息处理机制开发的解决各种问题的数学模型。本文将通过讲解人工神经网络的原理、实现步骤、实际案例,带着大家读懂人工神经网络。
537 1
一篇文章读懂人工神经网络