视觉语言模型导论:这篇论文能成为你进军VLM的第一步

简介: 【6月更文挑战第20天】探索AI如何理解与生成图像和文本,VLM结合图像与文本映射,涉及图像描述、问答等任务。论文由多所名校和机构研究人员共创,介绍VLM历史、类型(对比学习、掩码、生成、预训练)及应用,如图像生成和问答。同时,讨论数据质量、计算资源和模型可解释性的挑战。[阅读更多](https://arxiv.org/pdf/2405.17247)

随着人工智能的发展,我们越来越关注如何让机器理解和生成图像和文本。视觉语言模型(VLM)是这一领域的重要成果,它能够将图像和文本进行映射,从而实现图像的描述、图像的生成等功能。

然而,VLM的发展还处于初级阶段,许多问题和挑战仍然存在。为了帮助读者更好地理解VLM,我们将为你介绍一篇名为《An Introduction to Vision-Language Modeling》的论文。这篇论文由来自Meta、Université de Montréal、Mila、McGill University、University of Toronto、Carnegie Mellon University、Massachusetts Institute of Technology、New York University、University of California, Berkeley、University of Maryland、King Abdullah University of Science and Technology等机构的研究人员共同撰写,旨在为读者提供一个全面的VLM概述。

VLM是一种能够将图像和文本进行映射的模型。它的核心思想是通过学习图像和文本之间的对应关系,使得模型能够理解图像中的内容,并能够根据文本的描述生成相应的图像。

VLM的发展可以追溯到2015年,当时研究人员提出了基于图像的问答系统(Visual Question Answering),这标志着VLM的诞生。随后,研究人员开始探索如何将VLM应用于更多的任务,如图像描述生成、图像问答等。

根据不同的任务和应用场景,VLM可以分为不同的类型。

基于对比学习的VLM:这种类型的VLM通过对比学习算法,学习图像和文本之间的对应关系。例如,CLIP模型就是通过对比学习算法,学习了图像和文本之间的对应关系。
基于掩码的VLM:这种类型的VLM通过掩码算法,学习图像和文本之间的对应关系。例如,FLAVA模型就是通过掩码算法,学习了图像和文本之间的对应关系。
基于生成的VLM:这种类型的VLM通过生成算法,学习图像和文本之间的对应关系。例如,CoCa模型就是通过生成算法,学习了图像和文本之间的对应关系。
基于预训练的VLM:这种类型的VLM通过预训练算法,学习图像和文本之间的对应关系。例如,Frozen模型就是通过预训练算法,学习了图像和文本之间的对应关系。

训练VLM需要大量的数据和计算资源。为了提高训练效率,研究人员提出了许多方法和技术。

数据增强:通过数据增强技术,可以增加训练数据的多样性和丰富性,从而提高模型的泛化能力。
数据过滤:通过数据过滤技术,可以去除训练数据中的噪声和冗余信息,从而提高模型的训练效率。
模型并行:通过模型并行技术,可以将模型的训练过程并行化,从而提高模型的训练速度。
混合精度训练:通过混合精度训练技术,可以在不影响模型性能的情况下,提高模型的训练速度和内存利用率。

VLM在许多领域都有广泛的应用前景。

图像描述生成:通过VLM,可以自动生成图像的描述信息,从而帮助盲人或视觉障碍者更好地理解图像内容。
图像问答:通过VLM,可以自动回答关于图像的问题,从而帮助用户更好地理解图像内容。
图像生成:通过VLM,可以根据文本的描述生成相应的图像,从而实现图像的自动生成。
图像编辑:通过VLM,可以根据用户的需求对图像进行编辑和修改,从而实现图像的个性化定制。

尽管VLM在许多领域都取得了令人瞩目的成果,但仍然面临一些挑战。

数据质量:由于VLM需要大量的数据进行训练,因此数据的质量和多样性对模型的性能至关重要。然而,在实际应用中,数据的质量和多样性往往存在问题。
计算资源:由于VLM需要大量的计算资源进行训练,因此对计算资源的需求也是一个挑战。特别是对于一些小型企业或个人开发者来说,计算资源可能是一个限制因素。
模型可解释性:由于VLM通常是一个黑盒模型,因此其可解释性是一个挑战。如何让用户理解模型的决策过程和结果是一个重要的研究方向。

VLM是人工智能领域的一个重要研究方向,它的发展将对我们的生活产生深远的影响。通过这篇论文,读者可以对VLM有一个全面的了解,包括其定义、分类、训练、应用和挑战等。如果你对VLM感兴趣,这篇论文将是你开始研究VLM的第一步。

论文地址:https://arxiv.org/pdf/2405.17247

目录
相关文章
|
文字识别 前端开发
CodeFuse-VLM 开源,支持多模态多任务预训练/微调
随着huggingface开源社区的不断更新,会有更多的vision encoder 和 LLM 底座发布,这些vision encoder 和 LLM底座都有各自的强项,例如 code-llama 适合生成代码类任务,但是不适合生成中文类的任务,因此用户常常需要根据vision encoder和LLM的特长来搭建自己的多模态大语言模型。针对多模态大语言模型种类繁多的落地场景,我们搭建了CodeFuse-VLM 框架,支持多种视觉模型和语言大模型,使得MFT-VLM可以适应不同种类的任务。
1386 0
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
如何让AI更“聪明”?VLM模型的优化策略与测试方法全解析​
本文系统解析视觉语言模型(VLM)的核心机制、推理优化、评测方法与挑战。涵盖多模态对齐、KV Cache优化、性能测试及主流基准,助你全面掌握VLM技术前沿。建议点赞收藏,深入学习。
925 8
|
机器学习/深度学习 自然语言处理
自然语言处理Transformer模型最详细讲解(图解版)
自然语言处理Transformer模型最详细讲解(图解版)
11655 1
自然语言处理Transformer模型最详细讲解(图解版)
|
Ubuntu
Ubuntu系统镜像下载,国内镜像站大全(山大/清华/阿里/浙大/中科大...)
装Ubuntu,是很多理工科同学入门的第一个挑战,首先我们就需要找到一个能用的iso镜像,根据你的网络环境的不同,不同的站点下载速度会不一样,下面列举一下几个比较好用的,都是来自Ubuntu官方推荐镜像站链接导航国内分区
11304 1
|
算法 数据库 计算机视觉
Dataset之COCO数据集:COCO数据集的简介、下载、使用方法之详细攻略
Dataset之COCO数据集:COCO数据集的简介、下载、使用方法之详细攻略
|
11月前
|
缓存 算法 物联网
【论文专辑】2024年大模型推理优化论文精选第六期
本文整理了 OSDI 2024 和 SOSP 2024 中与大语言模型(LLM)推理优化相关的10篇论文,涵盖 Parrot、ServerlessLLM、dLoRA 等系统,提出的技术如 Chunked Prefill、Prefix-Caching、P/D分离等已被 vLLM 和 TensorRT-LLM 等主流推理引擎采用。这些研究解决了 LLM 推理中的冷启动延迟、资源分配、KV 缓存管理等问题,提升了推理性能和资源利用率。CodeFuse推理优化项目地址https://github.com/codefuse-ai/EasyDeploy
1387 2
|
存储 机器学习/深度学习 人工智能
创新场景丨小鹏汽车:端到端智驾真正竞赛在云端
算力上的提前布局,让小鹏汽车在国内率先实现端到端智能驾驶大模型量产上车。小鹏汽车认为,端到端只是开始,不是终局,真正的竞赛正在云端展开,云端大模型才是制胜关键。拥有强大算力的阿里云,支撑小鹏汽车端到端大模型的快速迭代。
|
10月前
|
机器学习/深度学习 计算机视觉
YOLOv11改进策略【Head】| 引入RT-DETR中的RTDETRDecoder,替换检测头
YOLOv11改进策略【Head】| 引入RT-DETR中的RTDETRDecoder,替换检测头
950 11
YOLOv11改进策略【Head】| 引入RT-DETR中的RTDETRDecoder,替换检测头
|
算法 计算机视觉 Python
python利用opencv进行相机标定获取参数,并根据畸变参数修正图像附有全部代码(流畅无痛版)
该文章详细介绍了使用Python和OpenCV进行相机标定以获取畸变参数,并提供了修正图像畸变的全部代码,包括生成棋盘图、拍摄标定图像、标定过程和畸变矫正等步骤。
python利用opencv进行相机标定获取参数,并根据畸变参数修正图像附有全部代码(流畅无痛版)

热门文章

最新文章