Java并发编程之Wait和Notify

简介: Java并发编程之Wait和Notify

@[toc]

Background

相关概念

什么是多线程

我们把组成程序(Program)各个部分称为线程(Thread)。也可以说,线程就是程序中轻量级的进程(Process)。

多线程(Multithreading)是Java的一个特性,它可以允许一个程序的多个部分(也就是线程)并发地执行,以达到最大程度利用CPU的目的。

Multithreading is a Java feature that allows concurrent execution of two or more parts of a program for maximum utilization of CPU. Each part of such program is called a thread. So, threads are light-weight processes within a process.

-- https://www.geeksforgeeks.org/multithreading-in-java/

线程的状态

[外链图片转存中...(img-ZKyokcdB-1676541073994)]

轮询

Samples

我们把循环执行某个逻辑判断,直到判断条件为true才执行判断体中的逻辑,叫做轮询(Polling)。轮询是会浪费一定的CPU资源的。

The process of testing a condition repeatedly till it becomes true is known as polling.Polling is usually implemented with the help of loops to check whether a particular condition is true or not. If it is true, certain action is taken. This waste many CPU cycles and makes the implementation inefficient.

-- https://www.geeksforgeeks.org/inter-thread-communication-java/

下面提供一个轮询的实现示例。

Message:

isAvailable初始值是false,设置为true以后执行轮询体。

注意要使用线程安全的AtomicBoolean,如果使用boolean,在多线程情况下会有意想不到的结果。

import lombok.Getter;
import lombok.Setter;
import java.util.concurrent.atomic.AtomicBoolean;

@Setter
@Getter
public class Message {
    private AtomicBoolean isAvailable = new AtomicBoolean(false);
    private String msg;
    public Message(String str) {
        this.msg = str;
    }
}

PollingWaiter:


import java.time.LocalDateTime;
import java.time.format.DateTimeFormatter;

public class PollingWaiter implements Runnable {
    private Message msg;
    public PollingWaiter(Message m) {
        this.msg = m;
    }

    @Override
    public void run() {
        String name = Thread.currentThread().getName();
        synchronized (msg) {
            int count = 0;
            System.out.println(name + " : waiter starting at time: " + LocalDateTime.now().format(DateTimeFormatter.ISO_TIME));
            while (!msg.getIsAvailable().get()) {
                count++;
            }
            System.out.println(name + " : msg is available at time: " + LocalDateTime.now().format(DateTimeFormatter.ISO_TIME));
            System.out.println(name + " : msg is available after count: " + count);
            System.out.println(name + " : processed: " + msg.getMsg());
        }
    }
}

执行测试:

休眠3秒以后,再执行轮询体内的代码。

import java.util.concurrent.atomic.AtomicBoolean;

public class WaitNotifyTest {

    public static void main(String[] args) {
        testPolling();
    }

    public static void testPolling() {

        Message msg = new Message("process it");

        PollingWaiter waiter = new PollingWaiter(msg);

        new Thread(waiter, "PollingWaiter").start();

        try {
            Thread.sleep(3000);
        } catch (Exception e) {
            e.printStackTrace();
        }
        msg.setIsAvailable(new AtomicBoolean(true));
        System.out.println("over");
    }

}

输出结果:

PollingWaiter : waiter starting at time: 14:26:08.482
over
PollingWaiter : msg is available at time: 14:26:11.402
PollingWaiter : msg is available after count: -69547606
PollingWaiter : processed: process it

wait 和 notify

除了轮询,Java通过wait 和 notify机制实现了线程间的通信。wait就是让执有某个对象的线程处于等待阻塞状态,而notify就是让等待阻塞中的线程重新获得CPU资源,再次进入运行状态。

由于wait 和 notify相关的方法实现在了java.lang.Object类中,因此所有的子类都可以使用这些方法。

wait 和 notify相关的方法需要在synchronized代码块中执行。

wait 和 notify

方法介绍

下面简要介绍一下这些方法:

  • wait()

wait()方法会导致当前线程从执行状态改为待执行状态,一直到另外一个线程为当前对象执行notify()或者notifyAll()方法。

  • wait(long timeout)

wait()方法的不同点是,如果timeout时间到了以后,还没有前对象执行notify()或者notifyAll(),则线程自动开始执行。

值得注意的是执行wait(0)wait()的效果是一样的。

  • wait(long timeout, int nanos)

wait(long timeout)相比,此方法提供了等待超时设置的更高的精度,精确到了纳秒。

1毫秒 = 1,000,000 纳秒。

  • notify()

对于等待此对象的监视器的所有线程,执行notify()会随机唤醒一个线程。

  • notifyAll()

相比与notify(),此方法会唤醒所有等待该对象的监视器的线程。

示例

在上面示例代码的基础上,增加如下代码实现。

Waiter:

import java.time.LocalDateTime;
import java.time.format.DateTimeFormatter;

public class Waiter implements Runnable{

    private Message msg;

    public Waiter(Message m){
        this.msg=m;
    }

    @Override
    public void run() {
        String name = Thread.currentThread().getName();
        synchronized (msg) {
            try{
                System.out.println(name+" : waiting to get notified at time:"+ LocalDateTime.now().format(DateTimeFormatter.ISO_TIME));
                msg.wait();
            }catch(InterruptedException e){
                e.printStackTrace();
            }
            System.out.println(name+" : waiter thread got notified at time:"+LocalDateTime.now().format(DateTimeFormatter.ISO_TIME));
            //process the message now
            System.out.println(name+" : processed: "+msg.getMsg());
        }
    }

}

Notifier:

public class Notifier implements Runnable {

    private boolean isAll = true;

    private Message msg;

    public Notifier(Message msg, boolean isAll) {
        this.msg = msg;
        this.isAll = isAll;
    }

    @Override
    public void run() {
        String name = Thread.currentThread().getName();
        System.out.println(name + " started");
        try {

            Thread.sleep(3000);

            synchronized (msg) {

                System.out.println(name + " : got the msg : "+msg.getMsg());

                msg.setMsg(name + " : Notifier work done");

                if (isAll) {
                    msg.notifyAll();
                } else {
                    msg.notify();
                }

            }
        } catch (InterruptedException e) {
            e.printStackTrace();
        }

    }

}

WaitNotifyTest:

import java.util.concurrent.atomic.AtomicBoolean;

public class WaitNotifyTest {

    public static void main(String[] args) {
        //testPolling();
        testNotify();
        //testNotifyAll();
    }

    public static void testPolling() {

        Message msg = new Message("process it");

        PollingWaiter waiter = new PollingWaiter(msg);

        new Thread(waiter, "PollingWaiter").start();

        try {
            Thread.sleep(3000);
        } catch (Exception e) {
            e.printStackTrace();
        }
        msg.setIsAvailable(new AtomicBoolean(true));
        System.out.println("over");
    }

    public static void testNotify() {
        Message msg = new Message("process it");

        Waiter waiter1 = new Waiter(msg);
        new Thread(waiter1, "waiter1").start();

        Waiter waiter2 = new Waiter(msg);
        new Thread(waiter2, "waiter2").start();

        Notifier notifier = new Notifier(msg, false);
        new Thread(notifier, "notifier").start();

        System.out.println("All the threads are started");
    }

    public static void testNotifyAll() {
        Message msg = new Message("process it");

        Waiter waiter1 = new Waiter(msg);
        new Thread(waiter1, "waiter1").start();

        Waiter waiter2 = new Waiter(msg);
        new Thread(waiter2, "waiter2").start();

        Notifier notifier = new Notifier(msg, false);
        new Thread(notifier, "notifier").start();

        System.out.println("All the threads are started");
    }
}

在启动两个线程同时执行wait方法的时候,会发现notify以后只有一个线程被唤醒了,而另一个线程则陷入了无尽地等待之中。

Links

仓库地址

https://github.com/javastudydemo/jsd-concurrent/tree/master/jsd-concurrent/src/main/java/net/ijiangtao/tech/concurrent/jsd/waitnotify/demo1

参考链接

目录
相关文章
|
10天前
|
JSON Java Apache
非常实用的Http应用框架,杜绝Java Http 接口对接繁琐编程
UniHttp 是一个声明式的 HTTP 接口对接框架,帮助开发者快速对接第三方 HTTP 接口。通过 @HttpApi 注解定义接口,使用 @GetHttpInterface 和 @PostHttpInterface 等注解配置请求方法和参数。支持自定义代理逻辑、全局请求参数、错误处理和连接池配置,提高代码的内聚性和可读性。
|
12天前
|
安全 Java 编译器
JDK 10中的局部变量类型推断:Java编程的简化与革新
JDK 10引入的局部变量类型推断通过`var`关键字简化了代码编写,提高了可读性。编译器根据初始化表达式自动推断变量类型,减少了冗长的类型声明。虽然带来了诸多优点,但也有一些限制,如只能用于局部变量声明,并需立即初始化。这一特性使Java更接近动态类型语言,增强了灵活性和易用性。
95 53
|
8天前
|
安全 Java 开发者
深入解读JAVA多线程:wait()、notify()、notifyAll()的奥秘
在Java多线程编程中,`wait()`、`notify()`和`notifyAll()`方法是实现线程间通信和同步的关键机制。这些方法定义在`java.lang.Object`类中,每个Java对象都可以作为线程间通信的媒介。本文将详细解析这三个方法的使用方法和最佳实践,帮助开发者更高效地进行多线程编程。 示例代码展示了如何在同步方法中使用这些方法,确保线程安全和高效的通信。
28 9
|
11天前
|
存储 安全 Java
Java多线程编程的艺术:从基础到实践####
本文深入探讨了Java多线程编程的核心概念、应用场景及其实现方式,旨在帮助开发者理解并掌握多线程编程的基本技能。文章首先概述了多线程的重要性和常见挑战,随后详细介绍了Java中创建和管理线程的两种主要方式:继承Thread类与实现Runnable接口。通过实例代码,本文展示了如何正确启动、运行及同步线程,以及如何处理线程间的通信与协作问题。最后,文章总结了多线程编程的最佳实践,为读者在实际项目中应用多线程技术提供了宝贵的参考。 ####
|
8天前
|
监控 安全 Java
Java中的多线程编程:从入门到实践####
本文将深入浅出地探讨Java多线程编程的核心概念、应用场景及实践技巧。不同于传统的摘要形式,本文将以一个简短的代码示例作为开篇,直接展示多线程的魅力,随后再详细解析其背后的原理与实现方式,旨在帮助读者快速理解并掌握Java多线程编程的基本技能。 ```java // 简单的多线程示例:创建两个线程,分别打印不同的消息 public class SimpleMultithreading { public static void main(String[] args) { Thread thread1 = new Thread(() -> System.out.prin
|
10天前
|
存储 缓存 安全
在 Java 编程中,创建临时文件用于存储临时数据或进行临时操作非常常见
在 Java 编程中,创建临时文件用于存储临时数据或进行临时操作非常常见。本文介绍了使用 `File.createTempFile` 方法和自定义创建临时文件的两种方式,详细探讨了它们的使用场景和注意事项,包括数据缓存、文件上传下载和日志记录等。强调了清理临时文件、确保文件名唯一性和合理设置文件权限的重要性。
26 2
|
11天前
|
Java
JAVA多线程通信:为何wait()与notify()如此重要?
在Java多线程编程中,`wait()` 和 `notify()/notifyAll()` 方法是实现线程间通信的核心机制。它们通过基于锁的方式,使线程在条件不满足时进入休眠状态,并在条件满足时被唤醒,从而确保数据一致性和同步。相比其他通信方式,如忙等待,这些方法更高效灵活。 示例代码展示了如何在生产者-消费者模型中使用这些方法实现线程间的协调和同步。
26 3
|
11天前
|
Java UED
Java中的多线程编程基础与实践
【10月更文挑战第35天】在Java的世界中,多线程是提升应用性能和响应性的利器。本文将深入浅出地介绍如何在Java中创建和管理线程,以及如何利用同步机制确保数据一致性。我们将从简单的“Hello, World!”线程示例出发,逐步探索线程池的高效使用,并讨论常见的多线程问题。无论你是Java新手还是希望深化理解,这篇文章都将为你打开多线程的大门。
|
12天前
|
安全 Java 编译器
Java多线程编程的陷阱与最佳实践####
【10月更文挑战第29天】 本文深入探讨了Java多线程编程中的常见陷阱,如竞态条件、死锁、内存一致性错误等,并通过实例分析揭示了这些陷阱的成因。同时,文章也分享了一系列最佳实践,包括使用volatile关键字、原子类、线程安全集合以及并发框架(如java.util.concurrent包下的工具类),帮助开发者有效避免多线程编程中的问题,提升应用的稳定性和性能。 ####
40 1
|
12天前
|
安全 Java 测试技术
Java并行流陷阱:为什么指定线程池可能是个坏主意
本文探讨了Java并行流的使用陷阱,尤其是指定线程池的问题。文章分析了并行流的设计思想,指出了指定线程池的弊端,并提供了使用CompletableFuture等替代方案。同时,介绍了Parallel Collector库在处理阻塞任务时的优势和特点。