使用深度学习进行图像去噪(三)

简介: 使用深度学习进行图像去噪

PRIDNet — Pyramid Real Image Denoising Network

这是用于盲降噪的最先进的深度学习架构。这种体系结构不像我们在前面的两个网络中看到的那样简单。PRIDNet有几个模块,分为三个主要部分。

640.png

起初看起来似乎有些不知所措。但是让我将其分解成细节,这很容易理解。

频道注意力模块

640.png

通道注意模块负责注意力机制。这里注意力机制的实现方式是将注意力放在输入U的每个通道上。可以将这种“注意力”视为权重。因此,每个通道将有一个权重。注意力权重将是大小为C [通道数]的向量。该向量将与输入U相乘。由于我们要“学习”注意力,因此我们需要该向量是可训练的。因此PRIDNet实施的过程是,首先对输入进行全局平均池化,然后从2个全连接层传递它,其结果应该是带有通道数的向量。这些是注意权重μ。

多尺度特征提取模块/金字塔模块

640.png

这是整个体系结构的核心。在这里,我们将使用给定内核大小的平均池化。这将对图像进行下采样。然后,我们将对其应用U-Net架构。我选择了5个级别的深层U-Net。最后,我们将以与平均池化相同的大小进行上采样。因此,这会将图像恢复为与输入(此模块的输入)相同的大小。

我们将使用不同的内核大小执行5次此操作,然后最后将结果连接起来。

内核选择模块

640.png

该模块的灵感来自介绍选择性内核网络的研究论文。该研究论文很好地阐述了该网络背后的思想,如下所示:

在标准的卷积神经网络(CNN)中,每一层中的人工神经元的感受野被设计为共享相同的大小。在神经科学界众所周知,视觉皮层神经元的感受野大小是受刺激调节的,在构建CNN时很少考虑。

设计了一个称为选择性内核(SK)单元的构建块,其中使用softmax注意融合了内核大小不同的多个分支,这些注意由这些分支中的信息指导。对这些分支的不同关注会导致融合层中神经元有效接受场的大小不同。

此模块与“通道注意力”模块非常相似。根据PRIDNet论文,大小为C的合成矢量α,β,γ分别表示对U’,U’和U’’的柔和注意。

整个PRIDNet架构图如下所示,

640.png

结果如下:

640.png

640.png

640.png

可以看到,与先前讨论的体系结构相比,该体系结构可提供最佳结果。在上面的眼睛特写图像中,请注意去噪图像中眼球的细节水平!

640.png

640.png

嘈杂图像中的黑色书籍[Cropped Library books]。它们几乎与周围的棕色家具没有区别。一切似乎都是黑色的。但是,我们的模型能够以至少可以区分书籍和周围家具的方式对其进行去噪。第二张图片[裁剪的图书馆家具]也是如此。在嘈杂的图像中,您可以看到家具非常黑,顶部似乎几乎是黑色的。但是,我们的模型能够理解棕色并对其进行去噪。这太神奇了!

该体系结构的PSNR得分为33.3105,SSIM得分为0.8534。

结果对比

640.png

我们可以清楚地看到PRIDNet是性能最佳的体系结构,用于消噪单个图像的时间最少。

现在,我们比较一下NLM滤波器和PRIDNet的结果。

640.png

640.png

要比较的关键领域

  • 黄色卡车的车顶区域
  • 橙色卡车的座位
  • 蓝色卡车中的橙色大灯
  • 蓝色卡车的车顶(观察阴影)
  • 地板中间的两个细条纹

还有很多

未来的工作和改进范围

图像去噪是一个活跃的研究领域,并且时不时地有许多惊人的架构正在开发以对图像进行去噪。最近,研究人员正在使用GAN来对图像进行降噪,事实证明,这种方法会产生令人惊讶的结果。好的GAN架构肯定会进一步改善去噪效果。

目录
相关文章
|
3月前
|
机器学习/深度学习 监控 算法
深度学习之图像去噪与去模糊
基于深度学习的图像去噪和去模糊是计算机视觉中的重要任务,旨在提升图像质量,去除噪声和模糊。
214 3
|
机器学习/深度学习 存储 算法
使用深度学习进行图像去噪(二)
使用深度学习进行图像去噪
557 0
使用深度学习进行图像去噪(二)
|
机器学习/深度学习 编解码 算法
使用深度学习进行图像去噪(一)
使用深度学习进行图像去噪
689 0
使用深度学习进行图像去噪(一)
|
机器学习/深度学习 编解码 算法
使用深度学习进行图像去噪
使用深度学习进行图像去噪
687 0
使用深度学习进行图像去噪
|
9天前
|
机器学习/深度学习 传感器 数据采集
深度学习在故障检测中的应用:从理论到实践
深度学习在故障检测中的应用:从理论到实践
43 5
|
1天前
|
机器学习/深度学习 网络架构 计算机视觉
深度学习在图像识别中的应用与挑战
【10月更文挑战第21天】 本文探讨了深度学习技术在图像识别领域的应用,并分析了当前面临的主要挑战。通过研究卷积神经网络(CNN)的结构和原理,本文展示了深度学习如何提高图像识别的准确性和效率。同时,本文也讨论了数据不平衡、过拟合、计算资源限制等问题,并提出了相应的解决策略。
30 19
|
1天前
|
机器学习/深度学习 传感器 人工智能
探索深度学习在图像识别中的应用与挑战
【10月更文挑战第21天】 本文深入探讨了深度学习技术在图像识别领域的应用,并分析了当前面临的主要挑战。通过介绍卷积神经网络(CNN)的基本原理和架构设计,阐述了深度学习如何有效地从图像数据中提取特征,并在多个领域实现突破性进展。同时,文章也指出了训练深度模型时常见的过拟合问题、数据不平衡以及计算资源需求高等挑战,并提出了相应的解决策略。
25 7
|
11天前
|
机器学习/深度学习 自动驾驶 算法
深度学习在图像识别中的应用
本文将探讨深度学习技术在图像识别领域的应用。我们将介绍深度学习的基本原理,以及如何利用这些原理进行图像识别。我们将通过一个简单的代码示例来演示如何使用深度学习模型进行图像分类。最后,我们将讨论深度学习在图像识别领域的未来发展趋势和挑战。
|
11天前
|
机器学习/深度学习 数据采集 算法
深度学习在图像识别中的应用与挑战
本文探讨了深度学习技术在图像识别领域的应用,重点分析了卷积神经网络(CNN)的基本原理、优势以及面临的主要挑战。通过案例研究,展示了深度学习如何提高图像识别的准确性和效率,同时指出了数据质量、模型泛化能力和计算资源等关键因素对性能的影响。
|
11天前
|
机器学习/深度学习 计算机视觉
深度学习在图像识别中的应用与挑战
本文深入探讨了深度学习技术在图像识别领域的应用及其面临的挑战。通过分析深度学习模型如卷积神经网络(CNN)的工作原理,我们揭示了这些模型如何有效地处理和识别图像数据。同时,文章也指出了当前深度学习在图像识别中遇到的一些主要问题,包括过拟合、数据集偏差和模型解释性等,为读者提供了对这一领域全面而深入的理解。