电磁波和无线电是什么

简介: 电磁波和无线电是什么

电磁波



电磁波(Electromagnetic wave)是由同相且互相垂直的电场与磁场在空间中衍生发射的振荡粒子波,是以波动的形式传播的电磁场,具有波粒二象性,其粒子形态称为光子,电磁波与光子不是非黑即白的关系,而是根据实际研究的不同,其性质所体现出的两个侧面。由同相振荡且互相垂直的电场与磁场在空间中以波的形式移动,其传播方向垂直于电场与磁场构成的平面


电磁波在真空中速率固定,速度为光速。见麦克斯韦方程组。


电磁波伴随的电场方向,磁场方向,传播方向三者互相垂直,因此电磁波是横波。电磁波实际上分为电波和磁波,是二者的总称,但由于电场和磁场总是同时出现,同时消失,并相互转换,所以通常将二者合称为电磁波,有时可直接简称为电波。


在量子力学角度下,电磁波的能量以一份份的光子呈现,光子本质上来说就是是波包,即以局域性能量呈现的波。电磁波的能量是量子化的,当其能级阶跃迁过辐射临界点,便以光子的形式向外辐射,此阶段波体为光子,光子属于玻色子。


一定频率范围的电磁波可以被人眼所看见,称之为可见光,或简称为光,太阳光是电磁波的一种可见的辐射形态。电磁波不依靠介质传播。


电磁辐射通常意义上指所有电磁辐射特性的电磁波,非电离辐射是指无线电波、微波、红外线、可见光、紫外线。而X射线及γ射线通常被认为是放射性的辐射。称作电离辐射。


按照波长或频率的顺序这些电磁波排列起来,就是电磁波谱。如果把每个波段的频率由低至高依次排列的话,它们是工频电磁波、无线电波(分为长波、中波、短波、微波)、红外线、可见光、紫外线、X射线及γ射线。以无线电的波长最长,宇宙射线(x射线、γ射线和波长更短的射线)的波长最短。


  • 无线电波用于通信等
  • 微波用于微波炉
  • 红外线用于遥控,热成像仪,红外制导导弹等,可见光是大部分生物用来观察事物的基础
  • 紫外线用于医用消毒,验证假钞,测量距离,工程上的探伤等
  • X射线用于CT照相,伽玛射线用于治疗,使原子发生跃迁从而产生新的射线等。


2602ef2463e34c8ab9f71b6b8d248a7a_tplv-k3u1fbpfcp-zoom-in-crop-mark_4536_0_0_0.png


无线电波谱



在19世纪末,意大利人马可尼和俄国人波波夫同在1895年进行了无线电通信试验。在此后的100年间,从3KHz直到300GHz频谱被认识、开发和逐步利用。随着技术的发展,3KHz以下的极长波电磁波已经可以产生出来了,300GHz以上的光学波段(红外线)也逐渐可以用电子振荡技术产生了,而不仅仅只是停留在量子跃迁产生(如激光器)的层面上了,如今用电子技术产生的电磁波频率可以超过1000GHz(1THz),最高甚至可以达到几万GHz(几十THz)。


根据不同的传播特性,不同的使用业务,对整个无线电频谱进行划分,共分13段:至低频、极低频(ELF)、超低频(SLF)、特低频(ULF)、甚低频(VLF)、低频(LF)、中频(MF),高频(HF)、甚高频(VHF)、特高频(UHF)、超高频(SHF)、极高频(EHF)和至高频,加上吉米波和忽米波,对应的波段从吉米波、至长波(百兆米波)、极长波(十兆米波)、超长波(兆米波)、特长波(十万米波)、甚长波(万米波)、长波(千米波)、中波(百米波)、短波(十米波)、甚短波(米波)、特短波(分米波)、超短波(厘米波)、极短波(毫米波)、至短波(丝米波)和忽米波(从分米波到毫米波的3种统称为微波)。


电磁波和无线电波的不同:


1、侧重点不一样


电磁波:由相同且互相垂直的电场与磁场在空间中衍生发射的震荡粒子波,侧重的是一种现象。


无线电:指在所有自由空间(包括空气和真空)传播的电磁波,侧重于技术。


2、包含的电磁种类数目不一样


电磁波:包含电磁种类较多,微波、红外线、可见光、紫外线等。

无线电:包含电磁种类较少。


目录
相关文章
|
传感器
差动放大器的介绍
一、差动放大器的原理 差动放大器是通过两个输入信号的差值来放大信号的一种电路。它由两个输入端口和一个输出端口组成,输入端口分别连接两个输入信号,输出端口连接放大后的信号。差动放大器的原理基于差动放大模式,即将两个输入信号分别连接到两个晶体管的基极端口,通过晶体管的放大作用将差值放大后输出。 差动放大器的工作原理是利用两个晶体管的共射放大作用,通过对输入信号进行差分放大,将差值放大后输出。其中一个晶体管的基极连接到输入信号,另一个晶体管的基极连接到输入信号的反相信号。通过对两个晶体管的控制,可以实现对输入信号的放大和输出。 二、差动放大器的工作方式 差动放大器的工作方式主要包括共模模式和差模
377 0
|
6月前
|
安全 数据处理 数据安全/隐私保护
基站(BTS)是无线通信的关键
【5月更文挑战第25天】基站(BTS)是无线通信的关键,包括宏基站、微基站、皮基站和飞基站等多种类型,覆盖不同区域。它们接收和处理移动设备信号,与核心网络交互确保通信稳定。基站提供通信覆盖,保障质量,支持数据传输,推动技术发展,并在应急情况下发挥关键作用。基站建设涉及选址、安装和线缆敷设,需定期维护和升级。尽管基站电磁辐射引发关注,但科学研究显示其辐射水平在安全范围内,且通信企业持续采取措施降低影响。了解基站有助于我们更好地理解和利用通信服务。
164 2
|
6月前
|
安全 前端开发 测试技术
双绞线(寻线仪,测线仪),光纤测试工具(红光笔,OTDR,光功率计)
双绞线(寻线仪,测线仪),光纤测试工具(红光笔,OTDR,光功率计)
56 0
放大器的介绍
一、放大器的原理 放大器的基本原理是将输入的音频信号经过放大电路放大后输出。放大电路中的核心元件是晶体管,通过控制晶体管的工作状态,使得输入信号得以放大。放大器的工作原理可以简单概括为:输入信号经过放大电路的放大作用,使得输出信号的幅度大于输入信号的幅度,从而实现音频信号的放大。 二、放大器的种类 1. 低频放大器:低频放大器主要用于放大低频信号,如音乐中的低音部分。它具有较大的功率,能够输出较高的音量,常见的低频放大器有功放和低音炮等。 2. 中频放大器:中频放大器主要用于放大中频信号,如人声、乐器等。中频放大器具有较好的音质表现,能够保持信号的原始特性,让听众感受到更加真实的音乐。
190 0
|
数据采集 传感器
NLM无线无源采发仪的主要特点
1. 无线传输:NLM无线无源采发仪采用无线传输技术,可便捷地远程传输数据,无需使用传统的有线连接方式,方便了数据采集和应用。
NLM无线无源采发仪的主要特点
|
机器学习/深度学习 传感器 算法
【FSK通信】调频fsk通信系统附matlab代码
【FSK通信】调频fsk通信系统附matlab代码
|
传感器
通信系统的基本组成
通信系统的基本组成
|
存储 芯片 内存技术
基于单片机的无线调频发射器的设计
基于单片机的无线调频发射器的设计
270 0
基于单片机的无线调频发射器的设计
光纤通信笔记--光纤通信系统的基本组成
光纤通信笔记--光纤通信系统的基本组成
423 0
光纤通信笔记--光纤通信系统的基本组成