2022数维杯D题损失评估与应对策略的研究 三重拉尼娜事件下的极端气候灾害思路分析

简介: Research on the loss evaluation and coping strategies

2022_“ShuWei杯”

问题D:损失评估与应对策略的研究



点击链接获取更多资料:数维杯资料获取

点击链接获取更多资料:数维杯资料获取

点击链接获取更多资料数维杯资料获取



image.png

image.png

三重拉尼娜事件下的极端气候灾害

2022年7月至8月,中国南方许多城市经历了多日的炎热天气,而北方部分地区也出现了大 规模的强降水。此外,许多欧洲国家也经历了历史上罕见的干旱灾害。无论是南部的高温天气 ,北方的强降水,还是欧洲的干旱天气,都是几十年来前所未有的,甚至是自气象资料以来的 最高气温、强降水和干旱灾害。高温天气在南方和欧洲国家的许多城市造成了一定规模的经济 损失和人员伤亡。同样,强降雨导致北部一些地区的农业生产大幅减少,甚至没有收成。气象 部门将这种高温现象和强降水事件归因于三重拉尼娜事件。

来自世界气象组织的最新数据显示,已经持续了很长时间的拉尼娜事件很可能会持续到今 年年底或以后。这将是21世纪的第一次三次拉尼娜事件,这意味着北半球连续三次发生拉尼娜 事件。拉尼娜事件是指赤道太平洋东部和中部的海洋表面温度继续异常寒冷的现象。英国《自 然》杂志6月发布警告,更多的拉尼娜事件将有多种影响,如增加东南亚洪水的可能性,增加干 旱和野火的风险在美国西南部,形成多个飓风,气旋和季风模式在太平洋和大西洋,并触发其 他地区的天气变化。

请结合国际气象数据免费下载平台,完成以下四个问题,如

https://www.ncei.noaa.gov/maps/daily/及其相关的优化建模方法:

(1) 对参与全球三拉尼娜事件的主要国家和地区进行统计分析,预测未来发生三拉尼娜 事件的可能性;

(2) 以一个国家为例,对三拉尼娜事件下高温和干旱造成的各种灾害损失进行评估和分 析,提供有针对性的应对策略。

(3) 以一个国家为例,对三拉尼娜事件作用下洪水造成的各种灾害损失进行评估和分析 ,并提供有针对性的应对策略;

(4) 请为相关管理层写一份不超过2000字的报告, 以应对三重拉尼娜事件。


2022_“ShuWei Cup”

Problem D:Research on the loss evaluation and coping strategies

of extreme climate disasters under the Triple La Niña Event

From July to August 2022, many cities in the south of China experienced many days of

hot weather, while in some parts of the north there were also large-scale heavy precipitation.

In addition, many European countries have also experienced historically rare drought

disasters. Whether it is high temperature weather in the south, heavy precipitation in the

north, and dry weather in Europe, it is unprecedented for decades, and even the highest

temperature, heavy precipitation and drought disasters have been recorded since

meteorological data. The high temperature weather has caused economic losses and

casualties to a certain scale in many cities in the south and European countries. Similarly, the

heavy rainfall has caused a significant reduction in agricultural production or even no harvest

in some areas of the north. The meteorological department attributed this high temperature

phenomenon and heavy precipitation event to the Triple La Niña event.

The latest data from the World Meteorological Organization shows that the La Niña

event, which has lasted for a long time, is likely to continue until the end of this year or

beyond. This will be the first Triple La Niña event in the 21st century, meaning three

consecutive La Niña winters in the northern hemisphere. The La Niña event is a phenomenon

in which the sea surface temperature in the eastern and central equatorial Pacific continues

to be abnormally cold. The British "Nature" magazine issued a warning in June that more La

Niña events will have multiple impacts, such as increasing the probability of flooding in

Southeast Asia, increasing the risk of drought and wildfires in the southwestern United States,

forming multiple hurricane, cyclone and monsoon patterns in the Pacific and Atlantic Oceans,

and triggering weather changes in other regions.

Please complete the following four questions in combination with international

meteorological data free download platforms such as

https://www.ncei.noaa.gov/maps/daily/ and their related optimization modeling methods:

(1)Conduct statistical analysis of the major countries and regions involved in the

global Triple La Niña event, and predict the possibility of the Triple La Niña events in the

future;

2)Taking a country as an example, evaluate and analyze the various types of disaster

losses caused by heat and drought under the Triple La Niña event, and provide targeted

coping strategies.

3)Taking a country as an example,evaluate and analyze various disaster losses

caused by floods under the action of the Triple La Niña event, and provide targeted coping

strategies;

4)Please write a report of no more than 2,000 words for the relevant management in

response to the Triple La Niña Event.

相关文章
|
算法 数据挖掘 数据库
priori 算法的影响因素分析| 学习笔记
快速学习 priori 算法的影响因素分析。
priori 算法的影响因素分析| 学习笔记
|
10天前
|
机器学习/深度学习 Serverless 定位技术
深入理解多重共线性:基本原理、影响、检验与修正策略
本文将深入探讨多重共线性的本质,阐述其重要性,并提供有效处理多重共线性的方法,同时避免数据科学家常犯的陷阱。
15 3
|
6月前
|
机器学习/深度学习 数据可视化
数据分享|R语言生存分析模型因果分析:非参数估计、IP加权风险模型、结构嵌套加速失效(AFT)模型分析流行病学随访研究数据
数据分享|R语言生存分析模型因果分析:非参数估计、IP加权风险模型、结构嵌套加速失效(AFT)模型分析流行病学随访研究数据
|
6月前
R语言解释生存分析中危险率和风险率的变化
R语言解释生存分析中危险率和风险率的变化
|
6月前
|
数据采集 数据挖掘
多维因素与学生辍学风险预测附录
多维因素与学生辍学风险预测附录
|
6月前
R语言估计多元标记的潜过程混合效应模型(lcmm)分析心理测试的认知过程
R语言估计多元标记的潜过程混合效应模型(lcmm)分析心理测试的认知过程
|
6月前
|
机器学习/深度学习 算法 数据可视化
突破传统生存分析:利用随机森林进行个体化风险预测
突破传统生存分析:利用随机森林进行个体化风险预测
508 0
突破传统生存分析:利用随机森林进行个体化风险预测
|
SQL 机器学习/深度学习 开发框架
【网安AIGC专题10.25】8 CoLeFunDa华为团队:静默漏洞检测(识别+多分类)+数据增强、样本扩充+对比学习+微调+结果分析(降维空间,分类错误样本归纳,应用场景优势,有效性威胁分析)
【网安AIGC专题10.25】8 CoLeFunDa华为团队:静默漏洞检测(识别+多分类)+数据增强、样本扩充+对比学习+微调+结果分析(降维空间,分类错误样本归纳,应用场景优势,有效性威胁分析)
268 0
思维模型No.32|如何真正改变行为?需要5种不同的干预策略
思维模型No.32|如何真正改变行为?需要5种不同的干预策略
170 0
MindOpt优化如何分散化风险并实现收益与风险最优配比问题
资产配置,投资组合是指通过分散投资资金的方式来规避投资过程中的风险。在实际的投资过程中,如何决定投资哪些产品来实现收益最大化和风险最小化是一个关键的问题。
MindOpt优化如何分散化风险并实现收益与风险最优配比问题