050.二叉搜索树操作

简介: 050.二叉搜索树操作
#include <stdio.h>
#include <stdlib.h>
struct node {
  int       value;
  struct node*  left;
  struct node*  right;
};
typedef struct node  NODE;
typedef struct node* PNODE;
void new_node (PNODE* n, int value) {
  *n = (PNODE)malloc (sizeof(NODE));
  if (*n != NULL) {
      (*n)->value = value;
    (*n)->left  = NULL;
    (*n)->right = NULL;
  }
}
void free_node (PNODE* n) {
  if ((*n) != NULL) {
    free (*n);
    *n = NULL;
  }
}
void free_tree (PNODE* n) {
    if (*n == NULL) return;
  if ((*n)->left != NULL) {
      free_tree (&((*n)->left));
  }
  if ((*n)->right != NULL) {
      free_tree (&((*n)->right));
  }
  free_node (n);
}
//查找结点
PNODE find_node (PNODE n, int value) {
  if (n == NULL) {
    return NULL;
  } else if (n->value == value) {
      return n;
  } else if (value <= n->value) {
      return find_node (n->left, value);
    } else {
        return find_node (n->right, value);
  }
}
//插入结点
void insert_node (PNODE* n, int value) {
  if (*n == NULL) {
    new_node (n, value);
    } else if (value == (*n)->value) {
        return;
  } else if (value < (*n)->value) {
        insert_node (&((*n)->left), value);
  } else {
    insert_node (&((*n)->right), value);
  }
}
//最长路径
int get_max_depth (PNODE n) {
  int left = 0;
  int right = 0;
      if (n == NULL) {
        return 0;
  }
    if (n->left != NULL) {
    left = 1 + get_max_depth (n->left);
  }
  if (n->right != NULL) {
    right = 1 + get_max_depth (n->right);
  }
  return (left > right ? left : right );
}
//最短路径
int get_min_depth (PNODE n) {
  int left = 0;
  int right = 0;
    if (n == NULL) {
        return 0;
  }
  if (n->left != NULL) {
    left = 1 + get_min_depth (n->left);
  }
  if (n->right != NULL) {
    right = 1 + get_min_depth (n->right);
  }
  return (left < right ? left : right );
}
int get_num_nodes (PNODE n) {
  int left = 0;
  int right = 0;
    if (n == NULL) {
        return 0;
  }
  if (n->left != NULL) {
    left = get_num_nodes (n->left);
  }
  if (n->right != NULL) {
    right = get_num_nodes (n->right);
  }
  return (left + 1 + right);
}
//最短路径长度
int get_min_value (PNODE n) {
    if (n == NULL) return 0;
  if (n->left == NULL) {
      return n->value;
  } else {
      return get_min_value(n->left);
    }
}
//最长路径长度
int get_max_value (PNODE n) {
  if (n == NULL) return 0;
  if (n->right == NULL) {
      return n->value;
  } else {
      return get_max_value(n->right);
    }
}
//删除结点
void deletenode (PNODE *n) {
  PNODE tmp = NULL;
  if (n == NULL) return;
  if ((*n)->right == NULL) {
      tmp = *n;
      *n = (*n)->left;
      free_node (n);
  } else if ((*n)->left == NULL) {
      tmp = *n;
      *n = (*n)->right;
      free_node (n);
  } else {
        for (tmp = (*n)->right; tmp->left != NULL; tmp = tmp->left);
        tmp->left = (*n)->left;
        tmp = (*n);
        *n = (*n)->right;
        free_node (&tmp);
  }
}
void delete_node (PNODE *n, int value) {
  PNODE node;
    if (n == NULL) return;
    node = find_node (*n, value);
  if ((*n)->value == value) {
    deletenode (n);
    } else if (value < (*n)->value) {
    delete_node (&((*n)->left), value);
    } else {
    delete_node(&((*n)->right), value);
  }
}
void pre_order_traversal(PNODE n)
{
    if (n != NULL) {
    printf ("%i ", n->value);
        pre_order_traversal (n->left);
        pre_order_traversal( n->right);
    }
}
void in_order_traversal (PNODE n)
{
    if (n != NULL) {
        in_order_traversal (n->left);
        printf ("%i ", n->value);
        in_order_traversal ( n->right);
    }
}
void post_order_traversal (PNODE n)
{
    if (n != NULL) {
        post_order_traversal (n->left);
        post_order_traversal (n->right);
        printf ("%i ", n->value);
    }
}
int main() {
  char buf[50];
  int  option;
  PNODE tree = NULL;
    PNODE node = NULL;
      while (1) {
    printf ("--------------------------\n");
    printf ("Options are:\n\n");
    printf (" 0  Exit\n");
    printf (" 1  Insert node\n");
    printf (" 2  Delete node\n");
    printf (" 3  Find node\n");
    printf (" 4  Pre order traversal\n");
    printf (" 5  In order traversal\n");
    printf (" 6  Post order traversal\n");
    printf (" 7  Max depth\n");
    printf (" 8  Min depth\n");
    printf (" 9  Max value\n");
    printf (" 10 Min value\n");
    printf (" 11 Node Count\n\n");
    printf ("--------------------------\n");
    printf ("Select an option: ");
    fgets (buf, sizeof(buf), stdin);
    sscanf (buf, "%i", &option);
    printf ("--------------------------\n");
    if (option < 0 || option > 11) {
        fprintf (stderr, "Invalid option");
        continue;
    }
      switch (option) {
        case 0:
            exit (0);
        case 1:
            printf ("Enter number to insert: ");
        fgets (buf, sizeof(buf), stdin);
        sscanf (buf, "%i", &option);
        printf ("\n\n");
        insert_node (&tree, option);
        break;
        case 2:
              printf ("Enter number to delete: ");
        fgets (buf, sizeof(buf), stdin);
        sscanf (buf, "%i", &option);
        printf ("\n\n");
        delete_node (&tree, option);
        break;
        case 3:
              printf ("Enter number to find: ");
        fgets (buf, sizeof(buf), stdin);
        sscanf (buf, "%i", &option);
        printf ("\n\n");
        node = find_node (tree, option);
        if (node != NULL) {
            printf ("Found node\n\n");
        } else {
            printf ("Couldn't find node\n\n");
        }
        break;
        case 4:
        printf ("Pre order traversal: ");
        pre_order_traversal (tree);
        printf ("\n\n");
        break;
        case 5:
            printf ("In order traversal: ");
          in_order_traversal (tree);
          printf ("\n\n");
          break;
        case 6:
            printf ("Post order traversal: ");
          post_order_traversal (tree);
            printf ("\n\n");
          break;
        case 7:
            printf ("Max depth is %i\n\n", get_max_depth (tree));
            break;
        case 8:
            printf ("Min depth is %i\n\n", get_min_depth (tree));
            break;
        case 9:
            printf ("Max value is %i\n\n", get_max_value (tree));
            break;
        case 10:
            printf ("Min value is %i\n\n", get_min_value (tree));
            break;
          case 11:
            printf ("Node Count is %i\n\n", get_num_nodes (tree));
            break;
    }
  }
  return 0;
}
相关文章
|
1月前
【LeetCode 45】701.二叉搜索树中的插入操作
【LeetCode 45】701.二叉搜索树中的插入操作
9 1
29_二叉搜索树中的插入操作
29_二叉搜索树中的插入操作
|
6月前
|
存储 C++
二叉树的操作(C++实现)
二叉树的操作(C++实现)
|
6月前
|
Java C++ Python
leetcode-701:二叉搜索树中的插入操作
leetcode-701:二叉搜索树中的插入操作
29 1
|
6月前
|
Serverless
二叉树的常见操作
二叉树的常见操作
|
C语言
二叉树的相关操作
本文主要是针对C语言数据结构的二叉树的相关操作包括遍历、线索化等进行介绍。
10779 4
二叉树的相关操作
leetcode 701二叉搜索树中的插入操作
leetcode 701二叉搜索树中的插入操作
63 0
leetcode 701二叉搜索树中的插入操作
|
存储
LeetCode 98验证二叉搜素树(中序遍历)&99恢复二叉搜索树
给定一个二叉树,判断其是否是一个有效的二叉搜索树。
122 0
LeetCode 98验证二叉搜素树(中序遍历)&99恢复二叉搜索树