练习3-77
原文
Exercise 3.77. The integral procedure used above was analogous to the “implicit” definition of the infinite stream of integers in section 3.5.2. Alternatively, we can give a definition of integral that is more like integers-starting-from (also in section 3.5.2):
(define (integral integrand initial-value dt)
(cons-stream initial-value
(if (stream-null? integrand)
the-empty-stream
(integral (stream-cdr integrand)
(+ (* dt (stream-car integrand)) initial-value)
dt))))
When used in systems with loops, this procedure has the same problem as does our original version of integral. Modify the procedure so that it expects the integrand as a delayed argument and hence can be used in the solve procedure shown above.
代码
(define (integral delayed-integrand initial-value dt)
(cons-stream initial-value
(let ((integrand (force delayed-integrand)))
(if (stream-null? integrand)
the-empty-stream
(integral (delay (stream-cdr integrand)) (+ (* dt (stream-car integrand)) initial-value) dt)))))
感谢您的访问,希望对您有所帮助。 欢迎大家关注或收藏、评论或点赞。
为使本文得到斧正和提问,转载请注明出处:
http://blog.csdn.net/nomasp