【数据结构与算法】:交换排序之快速排序(手绘图解+LeetCode原题)

简介: 快速排序是交换排序的一种,本质上快速排序就是采用“分而治之”的策略(分治法),将问题规模减小,再而对问题分别进行处理的排序算法。

排序算法:快速排序


一、快速排序


1.什么是快速排序?

2.快速排序的基本原理。

3.实现快速排序的具体过程。

二、算法优化

三、快速排序代码实现(优化后)。

四、算法分析

时间复杂度

五、快排思想在实际题目中的运用

题目一、剑指Offer 40.最小的k个数


一、快速排序


1.什么是快速排序?


快速排序是交换排序的一种,本质上快速排序就是采用“分而治之”的策略(分治法),将问题规模减小,再而对问题分别进行处理的排序算法。


2.快速排序的基本原理。


快速排序的原理:在已有元素中,任选一个元素作为“基准”,根据“基准”,将未排序元素划分为两个子序列,一个子序列的元素均小于基准元素,而另一个子序列的元素均大于基准元素,然后递归地对这两个子序列进行排序。


快速排序示意图(44为基准):

微信图片_20221028213256.png

3.实现快速排序的具体过程。


①选取一个元素作为基准,与末尾元素交换位置。

②设置两个指针(Low和High),分别指向首元素与倒数第二个元素。

微信图片_20221028213306.png

③Low指针由左向右扫描,其位置左侧放置的都是遍历过的或交换过的小于基准的元素;

—High指针从右向左扫描,其位置右侧放置的都是遍历过的或交换过的大于基准的元素。

—首先是Low指针向后扫描,遇到大于基准的元素停止;

—然后是High指针向前扫描,遇到小于基准的元素停止。

④在指针还未错位时(在 Low < High 时),将 High 和 Low 指向的元素交换位置。

微信图片_20221028213317.png

⑤重复上述操作,直至 High指针 和 Low指针 错位

微信图片_20221028213325.png微信图片_20221028213339.png微信图片_20221028213349.png微信图片_20221028213358.png

⑥错位后停止,将基准元素与指针Low指向元素交换位置,至此,我们成功将小于基准的元素放在其左,大于基准的元素放于其右!

——这代表我们成功完成了一次划分,以基准为边界分别划分成小于和大于基准的两个子序列。


⑦递归地对两个子序列,用同样的方法进行快速排序即可。


二、算法优化


需注意:

—在特殊情况下,比如在序列基本有序的情况下,若每次划分得到的两个子序列都是1比(N-1)的情况时,快速排序执行时间复杂度接近于冒泡排序的O(N²)。

—为了避免最坏结果,我们需要在下标为Low,High,(Low+High)/ 2的三个元素中取得中间值元素作为序列的基准,这样有可能避免最坏情况。


三、快速排序代码实现(优化后)

import java.util.Arrays;
/**
 * @author .29.
 * @create 2022-09-09 21:37
 */
public class QuickSort {
    public static void main(String[] args) {
        int[] arr = {85,12,59,36,62,44,43,94,7,35,52};//案例
        String str1 = Arrays.toString(arr);
        Qsort(arr,0,arr.length - 1);        //进行快速排序
        String str2 = Arrays.toString(arr);            //转换为字符串方便输出展示
       System.out.println(str1);                      //原序列输出
        System.out.println(str2);                      //快速排序后
    }
    public static void Qsort(int[] arr,int left,int right){
        if(left < right){
            int Low;                             //左边界
            int High;                            //右边界
            int Pivote;                          //基准
            Pivote = Median3(arr,left,right);    //获取基准
            Low = left;                          //需排序首元素的前一位(后续指针会优先向后移动)
          High = right - 1;                    //需排序尾元素的后一位(后续指针会优先向前移动)
            while(true){
                //指针优先向后移动,指向需排序首元素,若元素小于基准,继续后移
                while(arr[++Low] < Pivote);       
                //指针优先向前移动,指向需排序尾元素,若元素大于基准,继续前移
                while((Low<High) && arr[--High] > Pivote);
            if(Low < High) swap(arr,Low,High);//指针未错位,停止扫描后,元素交换位置
                else break;                       //指针错位,结束循环
            }
            if(Low < right)
          swap(arr,right-1,Low);              //将基准与错位后的Low指向元素交换位置
            Qsort(arr,left,Low-1);          //递归地对划分好的左序列用同样方法快速排序
        Qsort(arr,Low+1,right);          //递归地对划分好的右序列用同样方法快速排序
        }
        }
    //用来交换元素的方法(函数)
    public static void swap(int[] arr,int i,int j){
        int temp = arr[i];
        arr[i] = arr[j];
        arr[j] = temp;
    }
 public static int Median3(int[] arr,int left,int right){
        int center = left + ((right-left) >> 1);      //相当于(left+right)/2
        if(arr[left] > arr[center])         //如果首元素小于中间元素
            swap(arr,left,center);           //交换位置
     if(arr[left] > arr[right])          //如果首元素小于尾元素
            swap(arr,left,right);            //交换位置
        if(arr[center] > arr[right])        //如果中间元素小于尾元素
            swap(arr,center,right);          //交换位置
        //经过上述操作,此时arr[left] <= arr[center] <= arr[right]
        //将基准放置在倒数倒数第一个元素(不放在最后是因为末尾的arr[right]大于基准
        swap(arr,center,right - 1);
        //现在首元素小于基准,尾元素大于基准,只需要考虑left+1到right-2的情况(right-1是基准)
        return arr[right-1];//返回被选为基准的元素
    }

控制台输出:

微信图片_20221028213415.png


四、算法分析


时间复杂度


快速排序时间复杂度分析较为复杂。

最好情况下,每次划分都得到等长的子序列,每一层递归比较的时间复杂度为O(N),而递归层次深度为O(log2N),即最好情况是O(Nlog2N)。

最差时间复杂度上文有解释过,为O(N²)。


五、快排思想在实际题目中的运用


(更新于:2022.9.10)


题目一、剑指Offer 40.最小的k个数


LeetCode原题链接:剑指Offer 40.最小的k个数

题目描述:

输入整数数组 arr ,找出其中最小的 k 个数。
例如,输入4、5、1、6、2、7、3、8这8个数字,则最小的4个数字是1、2、3、4。
示例 1:
输入:arr = [3,2,1], k = 2
输出:[1,2] 或者 [2,1]
示例 2:
输入:arr = [0,1,2,1], k = 1
输出:[0]

解题思路:

经过上文的讲解,我们知道了,快速排序就是选定一个基准,通过一定操作让小于基准的元素放在基准左侧子序列,将大于基准的元素放在基准右侧子序列的排序算法。


题目的要求是:找出数组中最小的k个数,是不是觉得有什么地方十分相似?当我们的第k个数是快速排序的基准时,加上基准左侧的子序列,正是要求的最小的k个数…


所以解决问题的关键点就在于:

我们把基准及其左侧子序列的元素个数记作num

当num等于预期需要的数量k,输出划分好的序列即可。

当num大于预期需要的数量k,我们递归地对左序列进行同样的快排操作。

当num小于预期需要的数量k,我们递归地对基准之后与第k个元素之前的序列进行操作。(此时预期的数量就变为k-num了,因为num个数已经划分好,只需要划分剩下的元素,直至达到预期)


建议在理解代码时,画图辅助理解,特别是快排划分的那部分,有助于清晰地理解快排划分左子序列的具体过程。


实现代码:

class Solution {
    public int[] getLeastNumbers(int[] arr, int k) {
        Qselect(arr,0,arr.length-1,k);//利用快排思想,将最小的k个数放在序列前列
        int[] Oput = new int[k];      //开辟一个大小为K的空间
        for(int i = 0;i < k; ++i){    //循环地将最小的k个数放入空间
            Oput[i] = arr[i];
        }
        return Oput;                 
    }
    //快速选择的递归函数(方法)
    public void Qselect(int[] arr,int L,int R,int k){
        if(L >= R)                           
        return;
        int p = getPivote(arr,L,R);      //获取基准元素下标
        int num = p-L+1;                 //左侧小于基准的子序列的元素个数
        //(基准划分的 左子序列元素 <= 基准 < 右子序列元素)
            if(num == k ){               //若左子序列元素个数等于预期的数量k
                return;                  //直接返回的就是最小的k个数
            }else if(num > k){           //若左子序列元素个数超过预期的数量k
                Qselect(arr,L,p-1,k);    //递归地用快速排序继续划分序列
            }else{                       //若左子序列元素个数低于预期的数量k
            //递归地用快速排序划分基准右侧的序列,除去已划分好的个数num,预期数量改为k-num
                Qselect(arr,p+1,R,k-num);
            }
    }
    //随机选取基准,并用于快排的函数(方法)
    public int getPivote(int[] arr,int L,int R){
        int pivote = (int)(Math.random()*(R-L+1)+L);//序列中任取元素为基准
        swap(arr,pivote,R);                         //基准与尾元素交换
        return Qsort(arr,L,R);                      //完成一次快排划分,返回基准
    }
    //快速排序的函数(只考虑左子序列的情况)
    //此方法建议画图辅佐理解
    public int Qsort(int[] arr,int L,int R){
        int Low = L-1;                      //小于区域的边界
        int High = R;                       //尾元素,即基准元素下标
        for(int l = L;l < High; l++){       //从左向右扫描
            if(arr[l] <= arr[High]){        //如果扫过元素小于基准元素,即符合要求
                Low++;                      //小于区域边界向右移动
                swap(arr,Low,l);            //交换区域边界元素与扫过的元素
 //说明:当边界内元素小于基准,相当于与自身交换,当边界内元素大于基准,相当于将小于基准的元素换进来
            }
        }
        swap(arr,R,Low+1);                 //将基准与小于区域的下一位交换位置,表示完成一次划分
            return Low+1;                  //返回记住下标。
    }
    //用于交换元素位置的函数(方法)
    public void swap(int[] arr,int i,int j){
        int temp = arr[i];
        arr[i] = arr[j];
        arr[j] = temp;
    }
}

提交结果:

微信图片_20221028213423.png

总结,只要理解了基本的解题思路,问题就不算难,重要的还是要记住快速排序的基本模式是如何的。

目录
相关文章
|
2月前
|
算法 搜索推荐 Shell
数据结构与算法学习十二:希尔排序、快速排序(递归、好理解)、归并排序(递归、难理解)
这篇文章介绍了希尔排序、快速排序和归并排序三种排序算法的基本概念、实现思路、代码实现及其测试结果。
27 1
|
2月前
|
算法 搜索推荐 Java
数据结构与算法学习十三:基数排序,以空间换时间的稳定式排序,速度很快。
基数排序是一种稳定的排序算法,通过将数字按位数切割并分配到不同的桶中,以空间换时间的方式实现快速排序,但占用内存较大,不适合含有负数的数组。
34 0
数据结构与算法学习十三:基数排序,以空间换时间的稳定式排序,速度很快。
|
2月前
|
存储 搜索推荐 算法
【用Java学习数据结构系列】七大排序要悄咪咪的学(直接插入,希尔,归并,选择,堆排,冒泡,快排)以及计数排序(非比较排序)
【用Java学习数据结构系列】七大排序要悄咪咪的学(直接插入,希尔,归并,选择,堆排,冒泡,快排)以及计数排序(非比较排序)
29 1
|
2月前
LeetCode第二十四题(两两交换链表中的节点)
这篇文章介绍了LeetCode第24题的解法,即如何通过使用三个指针(preNode, curNode, curNextNode)来两两交换链表中的节点,并提供了详细的代码实现。
22 0
LeetCode第二十四题(两两交换链表中的节点)
|
2月前
|
搜索推荐 索引
【初阶数据结构】深度解析七大常见排序|掌握底层逻辑与原理(二)
【初阶数据结构】深度解析七大常见排序|掌握底层逻辑与原理
|
2月前
|
搜索推荐 C++
【初阶数据结构】深度解析七大常见排序|掌握底层逻辑与原理(一)
【初阶数据结构】深度解析七大常见排序|掌握底层逻辑与原理
|
2月前
|
算法
蓝桥杯宝藏排序 | 数据结构 | 快速排序 归并排序
蓝桥杯宝藏排序 | 数据结构 | 快速排序 归并排序
|
2月前
|
算法 安全 Java
介绍一下比较与交换算法
【10月更文挑战第20天】介绍一下比较与交换算法
18 0
05_用一个栈实现另一个栈的排序
05_用一个栈实现另一个栈的排序
|
2月前
|
人工智能 搜索推荐 算法
【初阶数据结构】深度解析七大常见排序|掌握底层逻辑与原理(三)
【初阶数据结构】深度解析七大常见排序|掌握底层逻辑与原理