JVM02——JVM垃圾回收与性能调优(下)(一)

简介: 6.垃圾回收6.1 判断垃圾6.1.1 引用计数法


标记清除可能会导致垃圾碎片过多,导致并发失败,CMS会退化为SerialOld,进行一次全面的垃圾整理。这无疑会造成很多的时间消耗,这也时CMS存在的一个问题。

6.8.5 G1垃圾回收器

JDK9的默认垃圾回收器,取代了之前的CMS垃圾回收器。

(1)垃圾回收阶段

首先是进行Young Collection,当老年代到达阈值时,进行Young Collection+ConcurrentMark,最后进行Mixed Colletion。

2)Young Collection

新创建的对象会被放入伊甸园。

当伊甸园满后(会分配总的大小)会进行Young Collection。通过复制算法将未被回收的对象移至幸存区。

当再次触发垃圾回收时,会将一部分没有被回收的幸存区对象移到老年代(达到年龄阈值),另一部分没有被回收的幸存区对象移到其他幸存区(未达到年龄阈值)。

(2)Young GC+CM(Concurrent marking)

  • 在Young GC(阶段1)的同时进行GC Root初始标记
  • 在老年代内存占用达到阈值时,会触发并发标记(无SWT)

(3)混合收集

混合收集阶段会全面收集垃圾,但是值得注意的是可以通过参数设置最大暂停时间,为了达到最大暂停时间的设置目标,老年代的内存可能不会全部进行拷贝整理,而是优先整理垃圾最多的内存。这也称其为G1的原因(Garbage First).

(4)Full GC


对于SerialGC和ParrallelGC而言,当老年代内存不足发生的垃圾回收就是full gc,但是对于CMS和G1垃圾回收器,老年代进行回收时是并发操作的,并不会造成太长的SWT,并不是full gc,G1、CMS只有当垃圾回收的速度比垃圾产生的速度要慢时,导致老年也满了,退化为SerialGC,才会触发full gc。


(5) Young Collection跨代使用


在进行young collection时,我们要查找GC Root,有一部分根对象可能在老年代中存活,新生代的对象被老年代引用了,如果我们对于整个老年代的对象进行扫描,效率肯定很低。G1垃圾回收器采取卡牌策略,把老年代的块状空间进一步划分为卡牌,当某个卡牌中的对象引用了新生代中的对象,就被标记为脏卡。在新生代内存中使用RememberSet来记录所有的引用,在查找GC Root时就可以通过RememberSet直接关注到脏卡区域,无需扫描全部老年代内存空间。当引用关系发生变化时,post-writter barrier和dirty card queue会配合更新变化的引用关系,最后通过异步线程Concurent reinforce Threads更新RememberSet。


6) Remark


通过post-writter barrier + satb_mark_queue实现。具体过程如下。


在remark阶段,我们采用黑色表示已经完成mark处理的对象,用灰色表示正在进行remark操作的对象,用白色表示还未进行remark操作的对象。如下图,A已经完成mark,并且其被强引用,故不会被垃圾回收,B正在remark,C尚未开始mark。

如果B完成Remark,在对C进行mark时恰B与C的引用断开(标记阶段垃圾回收线程与用户线程是并发的),那么C就会被标记成为白色。如果在后面A又引用了C,那么垃圾回收时,C对象会被回收吗?答案当然是不会。这是因为当C对象被引用时,会执行post-writter barrier,并将C对象放入satb_mark_queue,置为灰色。在进行remark时,会对satb_mark_queue中的对象进行扫描,如扫描到被引用,则会将其置为黑色。

(7)字符串去重


在jdk8中,string字符串是存放在char数组中,如果通过new String的方式创建可能会导致重复创建。除了通过intern()方法来避免重复创建的发生,G1垃圾回收器会在新生代回收时并发检查是否存在重复创建的字符串,如果有则让他们指向同一个char数组。使用-XX: +UseStringDeduplication可以开启字符串去重(默认打开)。


(8)类卸载


在jdk8u40后,所有对象在经过并发标记后,就可以知道哪些类不再被使用,当一个类加载器所有的类都不再被使用后(主要是框架、自定义类加载器),就会尝试对这些类进行类卸载。使用-XX:+ClassUnloadConcurrentWithMark可以开启类卸载(默认开启)。

相关文章
|
1月前
|
监控 算法 Java
Java虚拟机(JVM)垃圾回收机制深度剖析与优化策略####
本文作为一篇技术性文章,深入探讨了Java虚拟机(JVM)中垃圾回收的工作原理,详细分析了标记-清除、复制算法、标记-压缩及分代收集等主流垃圾回收算法的特点和适用场景。通过实际案例,展示了不同GC(Garbage Collector)算法在应用中的表现差异,并针对大型应用提出了一系列优化策略,包括选择合适的GC算法、调整堆内存大小、并行与并发GC调优等,旨在帮助开发者更好地理解和优化Java应用的性能。 ####
42 0
|
12天前
|
算法 网络协议 Java
【JVM】——GC垃圾回收机制(图解通俗易懂)
GC垃圾回收,标识出垃圾(计数机制、可达性分析)内存释放机制(标记清除、复制算法、标记整理、分代回收)
|
1月前
|
监控 架构师 Java
Java虚拟机调优的艺术:从入门到精通####
本文作为一篇深入浅出的技术指南,旨在为Java开发者揭示JVM调优的神秘面纱,通过剖析其背后的原理、分享实战经验与最佳实践,引领读者踏上从调优新手到高手的进阶之路。不同于传统的摘要概述,本文将以一场虚拟的对话形式,模拟一位经验丰富的架构师向初学者传授JVM调优的心法,激发学习兴趣,同时概括性地介绍文章将探讨的核心议题——性能监控、垃圾回收优化、内存管理及常见问题解决策略。 ####
|
1月前
|
存储 监控 算法
Java虚拟机(JVM)垃圾回收机制深度解析与优化策略####
本文旨在深入探讨Java虚拟机(JVM)的垃圾回收机制,揭示其工作原理、常见算法及参数调优方法。通过剖析垃圾回收的生命周期、内存区域划分以及GC日志分析,为开发者提供一套实用的JVM垃圾回收优化指南,助力提升Java应用的性能与稳定性。 ####
|
2月前
|
机器学习/深度学习 监控 算法
Java虚拟机(JVM)的垃圾回收机制深度剖析####
本文深入探讨Java虚拟机(JVM)的垃圾回收机制,揭示其工作原理、常见算法、性能调优策略及未来趋势。通过实例解析,为开发者提供优化Java应用性能的思路与方法。 ####
56 1
|
2月前
|
监控 Java 编译器
Java虚拟机调优指南####
本文深入探讨了Java虚拟机(JVM)调优的精髓,从内存管理、垃圾回收到性能监控等多个维度出发,为开发者提供了一系列实用的调优策略。通过优化配置与参数调整,旨在帮助读者提升Java应用的运行效率和稳定性,确保其在高并发、大数据量场景下依然能够保持高效运作。 ####
37 1
|
2月前
|
算法 Java
JVM有哪些垃圾回收算法?
(1)标记清除算法: 标记不需要回收的对象,然后清除没有标记的对象,会造成许多内存碎片。 (2)复制算法: 将内存分为两块,只使用一块,进行垃圾回收时,先将存活的对象复制到另一块区域,然后清空之前的区域。用在新生代 (3)标记整理算法: 与标记清除算法类似,但是在标记之后,将存活对象向一端移动,然后清除边界外的垃圾对象。用在老年代
26 0
|
2月前
|
缓存 Prometheus 监控
Elasticsearch集群JVM调优设置合适的堆内存大小
Elasticsearch集群JVM调优设置合适的堆内存大小
389 1
|
12天前
|
存储 Java 程序员
【JVM】——JVM运行机制、类加载机制、内存划分
JVM运行机制,堆栈,程序计数器,元数据区,JVM加载机制,双亲委派模型
|
1月前
|
存储 监控 算法
深入探索Java虚拟机(JVM)的内存管理机制
本文旨在为读者提供对Java虚拟机(JVM)内存管理机制的深入理解。通过详细解析JVM的内存结构、垃圾回收算法以及性能优化策略,本文不仅揭示了Java程序高效运行背后的原理,还为开发者提供了优化应用程序性能的实用技巧。不同于常规摘要仅概述文章大意,本文摘要将简要介绍JVM内存管理的关键点,为读者提供一个清晰的学习路线图。