pandas 高级(三)

简介: 本文其实属于:Python的进阶之道【AIoT阶段一】的一部分内容,本篇把这部分内容单独截取出来,方便大家的观看,本文介绍 pandas 高级,读本文之前建议先修:pandas 入门,后续还会发出一篇 pandas 进阶供读者进行进一步的学习了解。

3.数据转换

3.1 轴和元素替换

3.1.1 轴的替换

🚩替换轴使用的是函数 rename():

import numpy as np
import pandas as pd
df = pd.DataFrame(data = np.random.randint(0, 10, size = (10, 3)),
                  index = list('ABCDEFHIJK'),
                  columns = ['Python', 'Tensorflow', 'Keras'])
display(df)
# 重命名轴索引
df.rename(index = {'A':'AA', 'B':'BB'}, columns = {'Python':'AI'})
display(df)

26.png

3.1.2 元素的替换

🚩元素的替换使用 replace() 函数:

# 将5替换为1024
display(df.replace(5, 1024)) 
# 把0,7替换为2048
display(df.replace([0, 7], 2048))
# 把0替换为519,6替换为666
display(df.replace({0:519, 6:666}))
# 把 Python 这一列值为2的,替换为 -1024
display(df.replace({'Python':2}, -1024))

27.png

3.2 map Series元素改变

import numpy as np
import pandas as pd
df = pd.DataFrame(data = np.random.randint(0, 10, size = (10, 3)),
                  index = list('ABCDEFHIJK'),
                  columns = ['Python', 'Tensorflow', 'Keras'])
display(df)
# map 用来批量的修改元素
display(df['Keras'].map({6:'辰chen', 9:'AIoT'}))

28.png

从运行结果我们可以看出,使用 map 对数据进行替换后,未规定替换的数据会变成空数据。

如果我们想要保留原数据,可以写自定义函数:

def convert(x):
    if x == 6:
        return '辰chen'
    elif x == 9:
        return 'AIoT'
    else:
        return x
df['Keras'].map(convert)

image.png

当然,我们在 Python 中还学习过 lambda 表达式,在这里同样可以使用:

# 把 Python 这一列大于等于15的值变成True,否则变成False
df['Python'].map(lambda x : True if x >= 5 else False)

image.png


目录
相关文章
|
6月前
|
索引 Python
Pandas 高级教程——高级时间序列分析
Pandas 高级教程——高级时间序列分析
322 4
|
6月前
|
数据可视化 数据挖掘 数据处理
进阶 pandas DataFrame:挖掘高级数据处理技巧
【5月更文挑战第19天】本文介绍了Pandas DataFrame的高级使用技巧,包括数据重塑(如`pivot`和`melt`)、字符串处理(如提取和替换)、日期时间处理(如解析和时间序列操作)、合并与连接(如`merge`和`concat`),以及使用`apply()`应用自定义函数。这些技巧能提升数据处理效率,适用于复杂数据分析任务。推荐进一步学习和探索Pandas的高级功能。
|
6月前
|
数据挖掘 数据处理 Python
【Python DataFrame 专栏】深入探索 pandas DataFrame:高级数据处理技巧
【5月更文挑战第19天】在 Python 数据分析中,pandas DataFrame 是核心工具。本文介绍了几个高级技巧:1) 横向合并 DataFrame;2) 数据分组与聚合;3) 处理缺失值;4) 数据重塑;5) 条件筛选;6) 使用函数处理数据。掌握这些技巧能提升数据处理效率和分析深度,助你更好地发掘数据价值。
66 1
【Python DataFrame 专栏】深入探索 pandas DataFrame:高级数据处理技巧
|
4月前
|
数据采集 数据挖掘 数据处理
Python数据分析加速器:深度挖掘Pandas与NumPy的高级功能
【7月更文挑战第14天】Python的Pandas和NumPy库是数据分析的核心工具。Pandas以其高效的数据处理能力,如分组操作和自定义函数应用,简化了数据清洗和转换。NumPy则以其多维数组和广播机制实现快速数值计算。两者协同工作,如在DataFrame与NumPy数组间转换进行预处理,提升了数据分析的效率和精度。掌握这两者的高级功能是提升数据科学技能的关键。**
48 0
|
4月前
|
数据采集 机器学习/深度学习 数据处理
数据科学家的秘密武器:Pandas与NumPy高级应用实战指南
【7月更文挑战第14天】Pandas与NumPy在数据科学中扮演关键角色。Pandas的DataFrame和Series提供高效数据处理,如数据清洗、转换,而NumPy则以ndarray为基础进行数值计算和矩阵操作。两者结合,从数据预处理到数值分析,形成强大工具组合。示例展示了填充缺失值、类型转换、矩阵乘法、标准化等操作,体现其在实际项目中的协同效用。掌握这两者,能提升数据科学家的效能和分析深度。**
48 0
|
4月前
|
数据处理 Python
数据科学进阶之路:Pandas与NumPy高级操作详解与实战演练
【7月更文挑战第13天】探索数据科学:Pandas与NumPy提升效率的高级技巧** - Pandas的`query`, `loc`和`groupby`用于复杂筛选和分组聚合,例如筛选2023年销售额超1000的记录并按类别计总销售额。 - NumPy的广播和向量化运算加速大规模数据处理,如快速计算两个大数组的元素级乘积。 - Pandas DataFrame基于NumPy,二者协同加速数据处理,如将DataFrame列转换为NumPy数组进行标准化再回写,避免链式赋值。 掌握这些高级操作,实现数据科学项目的效率飞跃。
63 0
|
4月前
|
数据挖掘 数据处理 决策智能
Python 数据分析工具箱:深挖 Pandas 与 NumPy 高级功能,驱动智能决策
【7月更文挑战第12天】Python的Pandas和NumPy是数据分析的基石。Pandas提供灵活的数据结构如DataFrame,用于高效处理关系型数据,而NumPy则以多维数组和科学计算功能著称。两者结合,支持数据合并(如`pd.merge`)、时间序列分析(`pd.to_datetime`)和高级数组运算。通过掌握它们的高级特性,能提升数据分析效率,应用于各领域,如金融风险评估、市场分析和医疗预测,助力数据驱动的决策。学习和熟练运用Pandas与NumPy是成为出色数据分析师的关键。
60 0
|
5月前
|
数据采集 存储 数据可视化
Pandas高级教程:数据清洗、转换与分析
Pandas是Python的数据分析库,提供Series和DataFrame数据结构及数据分析工具,便于数据清洗、转换和分析。本教程涵盖Pandas在数据清洗(如缺失值、重复值和异常值处理)、转换(数据类型转换和重塑)和分析(如描述性统计、分组聚合和可视化)的应用。通过学习Pandas,用户能更高效地处理和理解数据,为数据分析任务打下基础。
668 3
|
6月前
|
数据采集 数据挖掘 数据处理
《Pandas 简易速速上手小册》第8章:Pandas 高级数据分析技巧(2024 最新版)
《Pandas 简易速速上手小册》第8章:Pandas 高级数据分析技巧(2024 最新版)
78 1
|
6月前
|
数据挖掘 数据处理 索引
Python 应知应会的Pandas高级操作
Python 应知应会的Pandas高级操作
97 0
下一篇
无影云桌面