暂时未有相关云产品技术能力~
暂无个人介绍
🙋魔搭ModelScope本期社区进展:📟4924个模型,📁357个数据集,🎨99个创新应用,📄 9篇内容:
近日,上海人工智能实验室(上海AI实验室)重磅开源发布了多模态大模型书生·万象 InternVL3.5,通过创新的级联式强化学习(Cascade RL)、动态视觉分辨率路由与解耦部署架构,实现推理能力、部署效率与通用能力的全面升级。
很高兴向大家宣布,ModelScope AIGC 专区的工作流功能正式上线!
AI生成的视频音效,已经可以用于视频制作了。
今天,通义万相的视频生成模型又开源了!本次开源Wan2.2-S2V-14B,是一款音频驱动的视频生成模型,可生成影视级质感的高质量视频。
今天,面壁智能正式开源 8B 参数的面壁小钢炮 MiniCPM-V 4.5 多模态旗舰模型,成为行业首个具备“高刷”视频理解能力的多模态模型,看得准、看得快,看得长!高刷视频理解、长视频理解、OCR、文档解析能力同级 SOTA,且性能超过 Qwen2.5-VL 72B,堪称最强端侧多模态模型。
字节跳动 Seed 团队正式发布了 Seed-OSS 系列开源大型语言模型,提供强大的长上下文、推理、代理和通用功能,以及对开发者友好的多功能特性。
继 7 月 26 日开源『书生』科学多模态大模型 Intern-S1 之后,上海人工智能实验室(上海AI实验室)在8月23日推出了轻量化版本 Intern-S1-mini。
🙋魔搭ModelScope本期社区进展:📟1652个模型,📁216个数据集,🎨54个创新应用,📄 4篇内容
开源VLM“华山论剑”丨AI Insight Talk多模态专场直播预告
通义千问团队开源发布Qwen-Image-Edit,基于20B的Qwen-Image模型,支持语义与外观双重编辑,可精准修改图片中的文字内容,并具备强大的跨基准性能表现,适用于IP创作、虚拟形象生成等多种场景,提供丰富的图像编辑能力。
🙋魔搭ModelScope本期社区进展:📟5285个模型,📁497个数据集,🎨59个创新应用,📄 9篇内容
🔥 这个夏天,开源热潮比气温更燃!Qwen3、GLM4.5、混元、Wan2.2、Qwen-Image等重磅模型密集发布,MoE、多模态、Agent、生图视频全爆发,ModelScope 全程 Day0 支持,生态持续进化中!
有没有想过,随手拍的一张风景照,下一秒就能变成可操控的游戏开放世界?
LoRA 模型的全新玩法——AutoLoRA 带你体验 LoRA 检索与融合的魔法
通义千问团队最新开源的图像生成模型 Qwen-Image,凭借其出色的中文理解与文本渲染能力,自发布以来获得了广泛关注与好评。
🙋魔搭ModelScope本期社区进展:📟2268个模型📁165个数据集;🎨78个创新应用📄 13篇内容
视觉语言大模型(VLM)已经成为智能系统的关键基石。随着真实世界的智能任务越来越复杂,VLM模型也亟需在基本的多模态感知之外,逐渐增强复杂任务中的推理能力,提升自身的准确性、全面性和智能化程度,使得复杂问题解决、长上下文理解、多模态智能体等智能任务成为可能。
小红书 hi lab开源最强多模态大模型dots.vlm1,性能对标闭源 Gemini 2.5 Pro 和 Seed-VL1.5
8月2日下午,魔搭社区ModelScope 联手 AMD,在杭州办了场有料有趣的「Agent × MCP」开发者实践专场!
自 2022 年 11 月成立以来,魔搭社区(ModelScope)已迅速成长为中国最大 AI 开源平台。 目前,社区已托管超 7 万个开源模型,覆盖大语言模型(LLM)、对话、语音、图像生成、视频生成、AI 作曲等多个领域;支持模型的 体验、下载、调优、训练、推理与部署全流程操作。
2025年10月,IROS (智能机器人与系统国际会议)期间,上海人工智能实验室(上海AI实验室)将举办物理世界中的多模态机器人学习研讨会,IROS 2025“桃源”与真实世界机器人学习挑战赛(机器人学习挑战赛)现已启动报名,欢迎全球创新者与挑战者参加。
今天,面壁小钢炮新一代多模态模型 MiniCPM-V 4.0 正式开源。依靠 4B 参数,取得 在 OpenCompass、OCRBench、MathVista 等多个榜单上取得了同级 SOTA 成绩,且 实现了在手机上稳定、丝滑运行。此外,官方也正式开源了 推理部署工具 MiniCPM-V CookBook,帮助开发者面向不同需求、不同场景、不同设备,均可实现开箱即用的轻量、简易部署。
时隔N年,OpenAI开放模型权重啦!欢迎使用gpt-oss 系列,专为强大的推理、代理任务和多用途开发场景设计。
混元是腾讯开源的高效大型语言模型系列,旨在在各种计算环境中灵活部署。从边缘设备到高并发生产系统,这些模型通过先进的量化支持和超长上下文能力提供了最佳性能。
🙋魔搭ModelScope本期社区进展:1498个模型,130个数据集,85个创新应用, 7 篇内容
7月28日晚,智谱带来新一代旗舰模型——GLM-4.5!GLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air 采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求。
魔搭ModelScope本期社区进展:1698个模型,216个数据集,103个创新应用, 7 篇内容
还在为快速验证MCP在对话中的效果而烦恼? 希望更灵活地组合魔搭开源模型API-Inference与Hosted MCP服务?
WebSailor网络智能体可以应用复杂场景下的检索任务,对于模糊问题可迅速在不同的网页中进行快速检索并推理验证,从而在海量信息中通过严密的多步推理和交叉验证中最终得出检索答案。
🙋魔搭ModelScope本期社区进展:3072个模型,193个数据集,121个创新应用:Qwen-TTS-Demo 📄 8 篇内容:
7月10日,2025·全球AI攻防挑战赛正式启动选手招募,邀请国内外的AI安全攻防精英参与全模态的AI攻防实战演练。本次大赛将重点关注数字身份交互认证安全,特别是在生活、金融和健康等场景下的应用。比赛分为图片、视频和音频三个赛道,采用攻防闭环的赛程设计,打破传统的静态攻防模式,推动安全技术的持续进化和发展。
七月流火,这个夏天火热的开场已然揭开。6月30号,我们在北京举办了首届魔搭开发者大会(ModelScope DevCon 2025),邀请了国内外知名的开源模型,以及头部开源工具的研发团队,与广大开发者共聚一堂进行分享。顶尖的AI 模型首次从线上 Hub走进线下盛会,为大家呈现了一场“模型全明星”盛会。同时我们还邀请了社区开发者参加我们的“搭友之夜”(aka 大规模面基大会)。大会分享场场爆满,现场只能用一句话来描述:“好~多~人~啊”,不提前占位根本挤不进去~~
近年来,大型语言模型(LLMs)发展迅速,比如 ChatGPT、Qwen、Claude、 Llama。这些模型最初的能力来自预训练规模的扩展(pre-training scaling),即通过 “next-token prediction” 的任务,在海量语料上训练,从而获得通用能力。但是面对具体场景,由于场景任务目标不一定和通用能力匹配(比如对齐场景),所以预训练模型表现会有一些不足。为了在预训练之后进一步优化大型语言模型,近年来的研究开始转向训练后和测试时的规模扩展,其中奖励模型起着关键作用。
今天,月之暗面正式发布 Kimi K2 模型,并同步开源。Kimi K2 是一款具备更强代码能力、更擅长通用 Agent 任务的 MoE 架构基础模型,总参数 1T,激活参数 32B。
GPT-4o 所展示对话式 AI 的新高度,正一步步把我们在电影《Her》中看到的 AI 语音体验变成现实。AI 的语音交互正在变得更丰富、更流畅、更易用,成为构建多模态智能体的重要组成部分。
🙋魔搭ModelScope本期社区进展:1481个模型,324个数据集,528个创新应用, 7 篇内容
7月3日,在来自政府、高校、企业和行业协会的各界嘉宾共同见证下,2025科技智能创新大赛启动仪式暨AFAC2025金融智能创新大赛合作伙伴授牌仪式于上海举行,并取得圆满成功。
6月30日,2025魔搭开发者大会(ModelScope DevCon 2025)在北京海淀 · 香格里拉饭店圆满收官!
6月底,Google正式开源发布了全新端侧多模态大模型 Gemma 3n!相较此前的预览版,最新的 Gemma 3n 完整版进一步提升性能表现,支持在 2GB 内存的硬件上本地运行,重点提升了编码和推理方面的能力。
魔搭AIGC搭子们,集合啦!ModelScope x FlowBench 团队
2025魔搭MCP&Agent挑战赛正式拉开帷幕!这是一场聚焦MCP协议生态与Agent应用落地的顶级开发者盛会,旨在推动工具标准化与智能体场景创新,探索AI开发者在终端硬件的创新实践。
近日,Jina AI 正式发布 jina-embeddings-v4,一款全新的多模态向量模型,参数规模达到 38 亿,并首次实现了对文本与图像的同步处理。
视觉语言大模型(VLM)已经成为智能系统的关键基石。
Flux.1 Kontext [dev] 开源模型大家都用上了吗?小编汇总了3个使用教程,打包送上!
6月30日,百度文心大模型4.5正式开源,魔搭社区在开源首日快速接入文心大模型,提供真正可用、好用、可落地的大模型解决方案,现已面向广大企业、开发者下载体验!
6月27日,腾讯混元宣布开源混元-A13B模型,总参数800亿,激活参数仅130亿,在效果比肩顶尖开源模型的同时,大幅降低推理延迟与计算开销。这意味着,开发者可以用更低门槛的方式获得更好的模型能力。
小型语言模型(SLM)通常被用于端侧推理,搜索推荐query改写这类对于资源要求低,大规模并发时延要求高的场景
Nanonets团队开源了 Nanonets-OCR-s,该模型基于Qwen2.5-VL-3B微调,9G显存就能跑。
2025魔搭开发者大会!来了!