Deephub_社区达人页

个人头像照片
Deephub
已加入开发者社区710

勋章 更多

个人头像照片
专家博主
专家博主
个人头像照片
星级博主
星级博主
个人头像照片
技术博主
技术博主
个人头像照片
一代宗师
一代宗师

成就

已发布1185篇文章
177条评论
已回答0个问题
0条评论
已发布0个视频
github地址

我关注的人 更多

技术能力

兴趣领域
擅长领域
技术认证

暂时未有相关云产品技术能力~

公众号 Deephub-IMBA

暂无精选文章
暂无更多信息

2023年05月

  • 05.19 10:09:34
    发表了文章 2023-05-19 10:09:34

    使用大语言模型集成工具 LangChain 创建自己的论文汇总和查询工具

    Langchain可以帮助开发人员构建由大型语言模型(llm)支持的应用程序。它提供一个框架将LLM与其他数据源(如互联网或个人文件)连接起来。这允许开发人员将多个命令链接在一起,以创建更复杂的应用程序。包括最近比较火爆的AutoGPT等都是使用了Langchain框架进行开发的。所以本文将介绍如何使用LangChain来创建我们自己的论文汇总工具。
  • 05.18 09:52:35
    发表了文章 2023-05-18 09:52:35

    LoRA:大模型的低秩自适应微调模型

    对于大型模型来说,重新训练所有模型参数的全微调变得不可行。比如GPT-3 175B,模型包含175B个参数吗,无论是微调训练和模型部署,都是不可能的事。所以Microsoft 提出了低秩自适应(Low-Rank Adaptation, LoRA),它冻结了预先训练好的模型权重,并将可训练的秩的分解矩阵注入到Transformer体系结构的每一层,从而大大减少了下游任务的可训练参数数量。
  • 05.17 10:40:58
    发表了文章 2023-05-17 10:40:58

    Github Copilot Chat的规则泄露,详细分析这31条规则

    GitHub Copilot 是一款由 GitHub 和 OpenAI 共同开发的人工智能编程助手。它是一种基于机器学习的代码自动完成工具,旨在帮助开发人员更高效地编写代码。
  • 05.16 09:54:36
    发表了文章 2023-05-16 09:54:36

    LayerNorm 在 Transformers 中对注意力的作用研究

    LayerNorm 一直是 Transformer 架构的重要组成部分。如果问大多人为什么要 LayerNorm,一般的回答是:使用 LayerNorm 来归一化前向传播的激活和反向传播的梯度。
  • 05.15 09:47:52
    发表了文章 2023-05-15 09:47:52

    数据信息汇总的7种基本技术总结

    数据汇总是一个将原始数据简化为其主要成分或特征的过程,使其更容易理解、可视化和分析。本文介绍总结数据的七种重要方法,有助于理解数据实质的内容。
  • 05.14 09:14:13
    发表了文章 2023-05-14 09:14:13

    使用RobustPCA 进行时间序列的异常检测

    鲁棒主成分分析(Robust Principal Component Analysis, RobustPCA)是一种将时间序列矩阵分解为低秩分量和稀疏分量的技术。这种分解能够识别潜在的趋势,以及检测异常和异常值。
  • 05.13 09:43:42
    发表了文章 2023-05-13 09:43:42

    视觉大模型DINOv2:自我监督学习的新领域

    本文将介绍DINOv2是如何改进的,以及这些进步可能对整个领域有什么影响。
  • 05.12 09:52:48
    发表了文章 2023-05-12 09:52:48

    形态学运算与仿真:图像处理中形态学操作的简单解释

    形态学是图像处理领域的一个分支,主要用于描述和处理图像中的形状和结构。形态学可以用于提取图像中的特征、消除噪声、改变图像的形状等。其中形态学的核心操作是形态学运算。
  • 05.11 09:57:00
    发表了文章 2023-05-11 09:57:00

    Softmax简介

    Softmax是一种数学函数,通常用于将一组任意实数转换为表示概率分布的实数。其本质上是一种归一化函数,可以将一组任意的实数值转化为在[0, 1]之间的概率值,因为softmax将它们转换为0到1之间的值,所以它们可以被解释为概率。如果其中一个输入很小或为负,softmax将其变为小概率,如果输入很大,则将其变为大概率,但它将始终保持在0到1之间。
  • 05.10 10:19:41
    发表了文章 2023-05-10 10:19:41

    使用Actor-Critic的DDPG强化学习算法控制双关节机械臂

    在本文中,我们将介绍在 Reacher 环境中训练智能代理控制双关节机械臂,这是一种使用 Unity ML-Agents 工具包开发的基于 Unity 的模拟程序。 我们的目标是高精度的到达目标位置,所以这里我们可以使用专为连续状态和动作空间设计的最先进的Deep Deterministic Policy Gradient (DDPG) 算法。
  • 05.09 10:41:43
    发表了文章 2023-05-09 10:41:43

    Transformers回顾 :从BERT到GPT4

    人工智能已成为近年来最受关注的话题之一,由于神经网络的发展,曾经被认为纯粹是科幻小说中的服务现在正在成为现实。从对话代理到媒体内容生成,人工智能正在改变我们与技术互动的方式。特别是机器学习 (ML) 模型在自然语言处理 (NLP) 领域取得了重大进展。一个关键的突破是引入了“自注意力”和用于序列处理的Transformers架构,这使得之前主导该领域的几个关键问题得以解决。
  • 05.08 09:50:09
    发表了文章 2023-05-08 09:50:09

    使用思维链(Chain-of-thoughts)提示在大型语言模型中引出推理

    语言模型(LM)在NLP领域的发展速度非常快,特别是在大型语言模型(LLM)方面:当语言模型具有大量参数或权重/系数时,它们被称为“大型”。这些“大型”语言模型拥有处理和理解大量自然语言数据的能力。
  • 05.07 09:12:40
    发表了文章 2023-05-07 09:12:40

    UNeXt:基于 MLP 的快速医学图像分割网络

    UNeXt是约翰霍普金斯大学在2022年发布的论文。它在早期阶段使用卷积,在潜在空间阶段使用 MLP。通过一个标记化的 MLP 块来标记和投影卷积特征,并使用 MLP 对表示进行建模。对输入通道进行移位,可以专注于学习局部依赖性。
  • 05.06 09:34:30
    发表了文章 2023-05-06 09:34:30

    KNN中不同距离度量对比和介绍

    k近邻算法KNN是一种简单而强大的算法,可用于分类和回归任务。他实现简单,主要依赖不同的距离度量来判断向量间的区别,但是有很多距离度量可以使用,所以本文演示了KNN与三种不同距离度量(Euclidean、Minkowski和Manhattan)的使用。
  • 05.05 09:39:29
    发表了文章 2023-05-05 09:39:29

    交互式数据分析和处理新方法:pandas-ai =Pandas + ChatGPT

    Python Pandas是一个为Python编程提供数据操作和分析功能的开源工具包。这个库已经成为数据科学家和分析师的必备工具。它提供了一种有效的方法来管理结构化数据(Series和DataFrame)。
  • 05.04 10:22:47
    发表了文章 2023-05-04 10:22:47

    VLAD Diffusion,一个更好用且易于安装的Stable Diffusion Web UI

    VLAD Diffusion 是我们前面介绍过的 AUTOMATIC1111/stable-diffusion-webui的一个定制的更新,它主要是为了更频繁发布的更新和错误修复。
  • 05.03 09:10:25
    发表了文章 2023-05-03 09:10:25

    余弦相似度算法进行客户流失分类预测

    余弦相似性是一种用于计算两个向量之间相似度的方法,常被用于文本分类和信息检索领域。
  • 05.02 10:33:17
    发表了文章 2023-05-02 10:33:17

    医学图像的深度学习的完整代码示例:使用Pytorch对MRI脑扫描的图像进行分割

    图像分割是医学图像分析中最重要的任务之一,在许多临床应用中往往是第一步也是最关键的一步。在脑MRI分析中,图像分割通常用于测量和可视化解剖结构,分析大脑变化,描绘病理区域以及手术计划和图像引导干预,分割是大多数形态学分析的先决条件。

2023年04月

  • 04.30 10:28:06
    发表了文章 2023-04-30 10:28:06

    使用Dino+SAM+Stable diffusion 自动进行图片的修改

    SAM 可以准确识别和提取图像中的对象,与Stable Diffusion 相结合,可以对分割后的图像进行细微的更改。
  • 04.29 13:11:48
    发表了文章 2023-04-29 13:11:48

    将时间序列转换为分类问题

    本文将以股票交易作为示例。我们用 AI 模型预测股票第二天是涨还是跌。在此背景下,比较了分类算法 XGBoost、随机森林和逻辑分类器。文章的另外一个重点是数据准备。我们必须如何转换数据以便模型可以处理它。
  • 04.28 16:03:35
    发表了文章 2023-04-28 16:03:35

    从零开始实现VAE和CVAE

    扩散模型可以看作是一个层次很深的VAE(变分自编码器),前向(forward,或者译为正向)的过程,通过在多个尺度上添加噪声来逐步扰乱数据分布;然后是反向的过程,去学习如何恢复数据结构,上述的破坏和恢复过程分别对应于VAE中的编码和解码过程。所以VAE是一个重要的概念需要掌握,本文将用python从头开始实现VAE和CVAE,来增加对于它们的理解。
  • 04.27 10:25:06
    发表了文章 2023-04-27 10:25:06

    ChatGPT的提示的一些高级知识

    作为一个大型语言模型(LLM)接口,ChatGPT有令人印象深刻的潜力,但是真正能否用好取决与我们的提示(Prompt ),一个好的提示可以让ChatGPT晋升到一个更好的层次。
  • 04.26 09:53:58
    发表了文章 2023-04-26 09:53:58

    AutoGPT也有Web UI了

    AutoGPT能够在你的电脑上做任何你想做的事情,并且我们在前面的文章中也介绍了其他的一些类似的应用。
  • 04.25 10:24:01
    发表了文章 2023-04-25 10:24:01

    使用PyTorch和Flower 进行联邦学习

    本文将介绍如何使用 Flower 构建现有机器学习工作的联邦学习版本。我们将使用 PyTorch 在 CIFAR-10 数据集上训练卷积神经网络,然后将展示如何修改训练代码以联邦的方式运行训练。
  • 04.24 10:13:21
    发表了文章 2023-04-24 10:13:21

    参数与非参数检验:理解差异并正确使用

    数据科学是一个快速发展的领域,它在很大程度上依赖于统计技术来分析和理解复杂的数据集。这个过程的一个关键部分是假设检验,它有助于确定从样本中获得的结果是否可以推广到总体。
  • 04.23 10:20:56
    发表了文章 2023-04-23 10:20:56

    论文推荐:基于联合损失函数的多任务肿瘤分割

    以FFANet为主干,加入分类的分支,将模型扩展为多任务图像分割框架,设计了用于分类和分割的联合损失函数。
  • 04.22 10:23:49
    发表了文章 2023-04-22 10:23:49

    KL散度和交叉熵的对比介绍

    KL散度(Kullback-Leibler Divergence)和交叉熵(Cross Entropy)是在机器学习中广泛使用的概念。这两者都用于比较两个概率分布之间的相似性,但在一些方面,它们也有所不同。本文将对KL散度和交叉熵的详细解释和比较。
  • 04.21 10:01:29
    发表了文章 2023-04-21 10:01:29

    AutoGPT、AgentGPT、BabyAGI、HuggingGPT、CAMEL:各种基于GPT-4自治系统总结

    ChatGPT和LLM技术的出现使得这些最先进的语言模型席卷了世界,不仅是AI的开发人员,爱好者和一些组织也在研究探索集成和构建这些模型的创新方法。各种平台如雨后春笋般涌现,集成并促进新应用程序的开发。
  • 04.20 10:05:19
    发表了文章 2023-04-20 10:05:19

    从Pandas快速切换到Polars :数据的ETL和查询

    对于我们日常的数据清理、预处理和分析方面的大多数任务,Pandas已经绰绰有余。但是当数据量变得非常大时,它的性能开始下降。
  • 04.19 11:07:55
    发表了文章 2023-04-19 11:07:55

    Grad-CAM的详细介绍和Pytorch代码实现

    Grad-CAM (Gradient-weighted Class Activation Mapping) 是一种可视化深度神经网络中哪些部分对于预测结果贡献最大的技术。它能够定位到特定的图像区域,从而使得神经网络的决策过程更加可解释和可视化。
  • 04.18 09:59:34
    发表了文章 2023-04-18 09:59:34

    生成式模型与辨别式模型

    分类模型可以分为两大类:生成式模型与辨别式模型。本文解释了这两种模型类型之间的区别,并讨论了每种方法的优缺点。
  • 04.17 10:37:36
    发表了文章 2023-04-17 10:37:36

    TensorFlow 决策森林详细介绍和使用说明

    使用TensorFlow训练、调优、评估、解释和部署基于树的模型的完整教程
  • 04.16 09:52:36
    发表了文章 2023-04-16 09:52:36

    时间序列的平稳性

    如何检查时间序列是否平稳,如果它是非平稳的,我们可以怎么处理
  • 04.15 11:06:52
    发表了文章 2023-04-15 11:06:52

    用CTGAN生成真实世界的表格数据

    随着CLIP和稳定模型的快速发展,图像生成领域中GAN已经不常见了,但是在表格数据中GAN还是可以看到它的身影。
  • 04.14 11:00:04
    发表了文章 2023-04-14 11:00:04

    神经网络初学者的激活函数指南

    如果你刚刚开始学习神经网络,激活函数的原理一开始可能很难理解。但是如果你想开发强大的神经网络,理解它们是很重要的。
  • 04.13 11:29:51
    发表了文章 2023-04-13 11:29:51

    2023年4月的12篇AI论文推荐

    GPT-4发布仅仅三周后,就已经随处可见了。本月的论文推荐除了GPT-4以外还包括、语言模型的应用、扩散模型、计算机视觉、视频生成、推荐系统和神经辐射场。
  • 04.12 10:56:06
    发表了文章 2023-04-12 10:56:06

    Pandas 2.0 vs Polars:速度的全面对比

    前几天的文章,我们已经简单的介绍过Pandas 和Polars的速度对比。刚刚发布的Pandas 2.0速度得到了显著的提升。但是本次测试发现NumPy数组上的一些基本操作仍然更快。并且Polars 0.17.0,也在上周发布,并且也提到了性能的改善,所以我们这里做一个更详细的关于速度方面的评测。
  • 04.11 11:00:54
    发表了文章 2023-04-11 11:00:54

    利用强化学习Q-Learning实现最短路径算法

    如果你是一名计算机专业的学生,有对图论有基本的了解,那么你一定知道一些著名的最优路径解,如Dijkstra算法、Bellman-Ford算法和a*算法(A-Star)等。
  • 04.10 10:49:05
    发表了文章 2023-04-10 10:49:05

    可视化CNN和特征图

    卷积神经网络(cnn)是一种神经网络,通常用于图像分类、目标检测和其他计算机视觉任务。CNN的关键组件之一是特征图,它是通过对图像应用卷积滤波器生成的输入图像的表示。
  • 04.09 10:41:52
    发表了文章 2023-04-09 10:41:52

    论文推荐:DCSAU-Net,更深更紧凑注意力U-Net

    这是一篇23年发布的新论文,论文提出了一种更深、更紧凑的分裂注意力的U-Net,该网络基于主特征守恒和紧凑分裂注意力模块,有效地利用了底层和高层语义信息。
  • 04.08 10:11:38
    发表了文章 2023-04-08 10:11:38

    7个最新的时间序列分析库介绍和代码示例

    时间序列分析包括检查随着时间推移收集的数据点,目的是确定可以为未来预测提供信息的模式和趋势。我们已经介绍过很多个时间序列分析库了,但是随着时间推移,新的库和更新也在不断的出现,所以本文将分享8个目前比较常用的,用于处理时间序列问题的Python库。他们是tsfresh, autots, darts, atspy, kats, sktime, greykite。
  • 04.06 11:12:12
    发表了文章 2023-04-06 11:12:12

    Pandas 2.0正式版发布: Pandas 1.5,Polars,Pandas 2.0 速度对比测试

    Pandas 2.0正式版在4月3日已经发布了,以后我们pip install默认安装的就是2.0版了,Polars 是最近比较火的一个DataFrame 库,最近在kaggle上经常使用,所以这里我们将对比下 Pandas 1.5,Polars,Pandas 2.0 。看看在速度上 Pandas 2.0有没有优势。
  • 04.05 10:46:52
    发表了文章 2023-04-05 10:46:52

    使用Python实现Hull Moving Average (HMA)

    赫尔移动平均线(Hull Moving Average,简称HMA)是一种技术指标,于2005年由Alan Hull开发。它是一种移动平均线,利用加权计算来减少滞后并提高准确性。
  • 04.04 10:56:07
    发表了文章 2023-04-04 10:56:07

    用遗传算法寻找迷宫出路

    遗传算法是一种基于达尔文进化论的搜索启发式算法。该算法模拟了基于种群中最适合个体的自然选择。
  • 04.03 10:30:08
    发表了文章 2023-04-03 10:30:08

    奇异值分解(SVD)和图像压缩

    在本文中,我将尝试解释 SVD 背后的数学及其几何意义,还有它在数据科学中的最常见的用法,图像压缩。
  • 04.01 10:15:04
    发表了文章 2023-04-01 10:15:04

    基于凸集上投影(POCS)的聚类算法

    POCS:Projections onto Convex Sets。在数学中,凸集是指其中任意两点间的线段均在该集合内的集合。而投影则是将某个点映射到另一个空间中的某个子空间上的操作。给定一个凸集合和一个点,可以通过找到该点在该凸集合上的投影来进行操作。该投影是离该点最近的凸集内的点,可以通过最小化该点和凸集内任何其他点之间的距离来计算。既然是投影,那么我们就可以将特征映射到另一个空间中的凸集合上,这样就可以进行聚类或降维等操作。

2023年03月

  • 发表了文章 2024-11-16

    利用PyTorch的三元组损失Hard Triplet Loss进行嵌入模型微调

  • 发表了文章 2024-11-15

    告别Print,使用IceCream进行高效的Python调试

  • 发表了文章 2024-11-14

    为什么卷积现在不火了:CNN研究热度降温的深层原因分析

  • 发表了文章 2024-11-13

    SMoA: 基于稀疏混合架构的大语言模型协同优化框架

  • 发表了文章 2024-11-12

    TSMamba:基于Mamba架构的高效时间序列预测基础模型

  • 发表了文章 2024-11-11

    基于MCMC的贝叶斯营销组合模型评估方法论: 系统化诊断、校准及选择的理论框架

  • 发表了文章 2024-11-10

    深度学习工程实践:PyTorch Lightning与Ignite框架的技术特性对比分析

  • 发表了文章 2024-11-09

    通过pin_memory 优化 PyTorch 数据加载和传输:工作原理、使用场景与性能分析

  • 发表了文章 2024-11-08

    贝叶斯统计中常见先验分布选择方法总结

  • 发表了文章 2024-11-07

    Tokenformer:基于参数标记化的高效可扩展Transformer架构

  • 发表了文章 2024-11-06

    基于LLM Graph Transformer的知识图谱构建技术研究:LangChain框架下转换机制实践

  • 发表了文章 2024-11-05

    基于Liquid State Machine的时间序列预测:利用储备池计算实现高效建模

  • 发表了文章 2024-11-04

    深入理解多重共线性:基本原理、影响、检验与修正策略

  • 发表了文章 2024-11-03

    基于PyTorch的大语言模型微调指南:Torchtune完整教程与代码示例

  • 发表了文章 2024-11-02

    10种数据预处理中的数据泄露模式解析:识别与避免策略

  • 发表了文章 2024-11-01

    随机性、熵与随机数生成器:解析伪随机数生成器(PRNG)和真随机数生成器(TRNG)

  • 发表了文章 2024-10-31

    Github上的十大RAG(信息检索增强生成)框架

  • 发表了文章 2024-10-30

    基于图论的时间序列数据平稳性与连通性分析:利用图形、数学和 Python 揭示时间序列数据中的隐藏模式

  • 发表了文章 2024-10-28

    深度学习中的学习率调度:循环学习率、SGDR、1cycle 等方法介绍及实践策略研究

  • 发表了文章 2024-10-27

    过采样与欠采样技术原理图解:基于二维数据的常见方法效果对比

正在加载, 请稍后...
滑动查看更多
正在加载, 请稍后...
暂无更多信息
正在加载, 请稍后...
暂无更多信息