暂时未有相关云产品技术能力~
暂无个人介绍
Java实现快速排序
Java实现归并排序
Java实现基数排序
Java实现希尔排序
Java实现选择排序
10:超级玛丽游戏
09:字符菱形
08:字符三角形
07:输出浮点数
06:空格分隔输出
05:输出保留12位小数的浮点数
04:输出保留3位小数的浮点数
03:对齐输出
02:输出第二个整数
06:整数奇偶排序
02:奇数单增序列
01:谁考了第k名
TensorFlow训练网络有两种方式,一种是基于tensor(array),另外一种是迭代器 两种方式区别是: 第一种是要加载全部数据形成一个tensor,然后调用model.fit()然后指定参数batch_size进行将所有数据进行分批训练 第二种是自己先将数据分批形成一个迭代器,然后遍历这个迭代器,分别训练每个批次的数据
在推荐系统或者一些大型文本分类数据任务上,对于一些数据的维度非常高,而且因为稀疏型(分类)特征不能直接喂给模型,我们需要将其映射成稠密连续特征(数值型)。
有时我们的输入数据不只一个,会存在多个输入源,多个输出源,对于这种情况我们使用Sequential显然是不行的,因为Sequential只能够搭建线性拓扑模型,对于那种流水线型的模型较为适合,如果是非线性拓扑,复杂的拓扑使用Sequential是不能够实现的,这是我们就需要使用Function API,它会使我们处理多输入多输出变得简单。
有些时候我们需要对一些输入层进行权值共享,这个目的就是有些输入源的数据是非常类似的,我们可以使用同一个层来进行捕捉特征,比如左右眼图片识别等,左右眼的结构较为类似,所以我们可以使用一个共享卷积核进行操作,而不需要两个卷积分别作用于两个眼部输入源。
由于要处理的层计算图是静态数据结构,可以对其进行访问和检查。而这就是将函数式模型绘制为图像的方式。
在TensorFlow中已经内置了很多常用的损失函数,可以满足我们的模型训练要求,但是有的时候我们自己特定的任务会有自己的损失函数,这样TensorFlow库中的函数就不会满足我们,我们就需要自己定义计算损失的方法。
有些时候我们的指标不止这些,需要根据我们自己特定的任务指定自己的评估指标,这时就需要自定义Metric,需要子类化Metric,也就是继承keras.metrics.Metric,然后实现它的方法
在TensorFlow中fit()函数可以接收numpy类型数据,前提数据量不大可以全部加载到内存中,但是如果数据量过大我们就需要将其按批次读取,转化成迭代器的形式,也就是DataSets
训练深度学习模型的常见模式是随着训练的进行逐渐减少学习。这通常称为“学习率衰减”。
计算每个epoch周期的平均指标,这个回调已经被自动应用在每个Keras模型,所以不需要手动设置
生成对抗网络 (GAN)。通过学习图像训练数据集的隐分布(图像的“隐空间”),GAN 可以生成看起来极为真实的新图像。
由于TensorFlow已经将整个模型的训练阶段进行了封装,所以我们无法在训练期间或者预测评估期间定义自己的行为,例如打印训练进度、保存损失精度等,这是我们就可以利用回调函数
TensorFlow训练模型需要经过多个epoch,但是并不是epoch越多越好,很有可能训练一半的epoch时,模型的效果开始下降,这是我们需要停止训练,及时的保存模型,为了完成这种需求我们可以自定义回调函数,自动检测模型的损失,只要达到一定阈值我们手动让模型停止训练
迁移学习包括获取从一个问题中学习到的特征,然后将这些特征用于新的类似问题。例如,来自已学会识别浣熊的模型的特征可能对建立旨在识别狸猫的模型十分有用。
注解:这里为了简单起见,只是模拟NIN网络结构,本代码只是采用3个mlpconv层和最终的全局平均池化输出层,每个mlpconv层中包含了3个1*1卷积层
解决ERROR: Cannot uninstall ‘PyYAML‘. It is a distutils installed project and thus we cannot accuratel
NNI是微软亚洲研究院为研究人员和算法工程师量身定制的自动机器学习(AutoML)工具。过去的几年中,NNI不断迭代更新,持续将最前沿的算法加入其中,加强对各种分布式训练环境的支持,目前NNI已在Github上获得了10.8k星,成为最热门的自动机器学习开源项目之一。
众所周知,人类自然语言中包含了丰富的情感色彩:表达人的情绪(如悲伤、快乐)、表达人的心情(如倦怠、忧郁)、表达人的喜好(如喜欢、讨厌)。利用机器自动分析这些情感倾向,不但有助于帮助企业了解消费者对其产品的感受,为产品改进提供依据;同时还有助于企业分析商业伙伴们的态度,一遍更好地进行商业决策。
解决AttributeError: module ‘tensorflow‘ has no attribute ‘div‘
在NLP自然语言处理领域,有时我们需要计算不同文本之间的相似度,将不同文本进行编码,然后处理成Embedding定长表示向量,然后使用LSTM进行输出文本表示,定义多个多输入源数据进行计算。
解决ERROR: Cannot uninstall ‘llvmlite‘. It is a distutils installed project and thus we cannot accurat
数据降维最为重要的是降低数据的维度的同时尽可能保有大量的原始信息,而其中最为大家熟知的是PCA和tSNE,但是这二者都存在一些问题
由于使用协同过滤,单纯考虑user或item之间的正反馈交互以及相似度量,这不能很好的利用全局信息,如果两个用户没有相同的历史行为,或者两个物品没有相同的用户购买,那么对于这两个物品或者用户来说,它们之间的相似度为0,这就会导致使用协同过滤不具备泛化利用全局信息的能力。
在推荐领域,我们为了捕捉更多隐含特征,需要对用户-物品共现矩阵进行分解,对矩阵分解的方法主要有三种
GBM和随机森林都是基于树的算法,它们有什么区别?
近年来,深度神经网络在语音识别、计算机视觉和自然语言处理方面取得了巨大的成功。然而,深度神经网络在推荐系统上的探索相对较少受到关注。在这项工作中,我们致力于开发基于神经网络的技术来解决推荐中的关键问题——基于隐式反馈的协同过滤。
在CRT预估中,工业界一般是会采用逻辑回归进行处理,对用户特征画像进行建模,然后计算点击概率,评估用户是否会有点击的行为。
点击预测系统大多是以在线广告系统维中心,每天7亿的日常活跃用户和超过1百万的活跃广告,因此预测FaceBook上的广告点击率是一项具有挑战的机器学习任务。本片论文中我们介绍了一个模型采用决策树和逻辑回归结合的模式,融合模型的表现胜过它们自己单独建模的效果3%,这个一个重大的影响对于整个系统的表现。
在CRT预估中,工业界一般是会采用逻辑回归进行处理,对用户特征画像进行建模,然后计算点击概率,评估用户是否会有点击的行为。
TensorFlow实现FM特征分解机
DictVectorizer:它是可以将非结构化的数据转成array格式,这里将字典数据转成数组,一般情况下使用字典是因为在推荐系统中的矩阵一般是稀疏的,所以采用字典存储数据高效,可以不用存储大量无用的0
推荐系统算法在电商网站现在已经被广泛使用,特们会使用关于用户兴趣的数据作为输入然后去产生一系列的推荐列表。一些应用只使用顾客购买的物品或者显示他们兴趣的数据,而且他们还会使用用户的其它属性,包括用户浏览过的物品,人口特征画像,感兴趣的话题和最喜爱的艺术家等。
本篇论文中,作者介绍了一个新的分解模型Fatorization Machines(FM),它结合了支持向量机的一些优点。与SVM一样,FM模型是一个通用的预测分类器适用于任何真实值的向量。但是与SVM不同的是,FM通过使用分解参数的方式在不同变量之间进行建模。