暂无个人介绍
4月25-26日,为期一天半的 Flink Forward 全球直播中文精华版将精选大会最佳实践、Flink 深度技术解析、社区生态等优质内容进行翻译并搭配中文解说,邀您共赴技术盛宴!
多位 Flink PMC 及核心贡献者出品,帮你建立系统框架体系,最详细的免费教程,Flink 入门必读经典!越早学习,越能抓住时代先机。
简介: 为了让宝贵的经验传播,方便大家快速上手 Flink,小编将零基础入门系列整理成合集供大家下载,学习和使用。
为了让宝贵的经验传播,方便大家快速上手 Flink,小编将 Flink 生态系列整理成合集供大家下载,学习和使用。
为了让宝贵的经验传播,方便大家快速上手 Flink,小编将 Flink 生产实践系列整理成合集供大家下载,学习,使用。
本文由趣头条数据平台负责人王金海分享,主要介绍趣头条 Flink-to-Hive 小时级场景和 Flink-to-ClickHouse 秒级场景。
本文由 Netflix 高级软件工程师徐振中分享,内容包含有趣的案例、分布式系统基础方面的各种挑战以及解决方案,此外还讨论了其在开发运维过程中的收获,对开放式自助式实时数据平台的一些新愿景,以及对 Realtime ETL 基础平台的一些新思考。
文章将从用户的角度来讲解 Flink 1.9 版本中 SQL 相关原理及部分功能变更,希望加深大家对 Flink 1.9 新功能的理解,在使用上能够有所帮助。
3 月 26 日,Apache 官方博客宣布其成立 21 周年,博客中对 Apache 之道、Apache 大型项目的应用以及 Apache 基金会里程碑事件进行了盘点。其中 Apache Flink 在 2019 年阿里巴巴双 11 场景中突破实时计算消息处理峰值达到 25 亿条/秒的记录被 Apache 官方博客收录。
本文基于 Flink 1.9.0 和 Kafka 2.3 版本,对 Flink Kafka source 和 sink 端的源码进行解析,主要分为 Flink-kafka-source 源码解析、Flink-kafka-sink 源码解析两部分。
内容涵盖邮件列表中用户问题的解答、社区开发和提议的进展、社区新闻以及其他活动、博客文章等,欢迎持续关注~
Flink 社区在集成 Hive 功能方面付出很多,目前进展也比较顺利,最近 Flink 1.10.0 RC1 版本已经发布,感兴趣的读者可以进行调研和验证功能。
是因为一项技术火,你才学的吗?是因为你老板决定用这项技术,你才学的吗?那你有没有想过为什么这项技术会火,为什么你老板决定用这项技术。今天我们就以 Flink 为例,来好好聊为什么要学习 Flink,以及如何看待一项新技术是否有潜力,希望对你有所启发。
Flink Weekly 周报计划每周更新一期,内容涵盖邮件列表中用户问题的解答、社区开发和提议的进展、社区新闻以及其他活动、博客文章等,欢迎持续关注~
本文将介绍跟 Flink 相关的一些 RocksDB 操作,并讨论一些提高资源利用率的重要配置。
Flink Weekly 周报计划每周更新一期,内容涵盖邮件列表中用户问题的解答、社区开发和提议的进展、社区新闻以及其他活动、博客文章等,欢迎持续关注~
目前企业的数仓建设大多是离线一套,实时一套。业务要求低延时的使用实时数仓;业务复杂的使用离线数仓。架构十分复杂,需要使用很多系统和计算框架,这就要求企业储备多方面的人才,导致人才成本较高,且出了问题难以排查,终端用户也需要熟悉多种语法。
Flink Weekly 周报计划每周更新一期,内容涵盖邮件列表中用户问题的解答、社区开发和提议的进展、社区新闻以及其他活动、博客文章等,欢迎持续关注~
Flink 从 1.9.0 版本开始增加了对 Python 的支持(PyFlink),在刚刚发布的 Flink 1.10 中,PyFlink 添加了对 Python UDFs 的支持,现在可以在 Table API/SQL 中注册并使用自定义函数。PyFlink 的架构如何,适用于哪些场景?本文将详细解析并进行 CDN 日志分析的案例演示。
Flink 从 1.9.0 版本开始增加了对 Python 的支持(PyFlink),在刚刚发布的 Flink 1.10 中,PyFlink 添加了对 Python UDFs 的支持,现在可以在 Table API/SQL 中注册并使用自定义函数。
Apache Flink 是一个分布式大数据处理引擎,可对有限数据流和无限数据流进行有状态计算。可部署在各种集群环境,对各种大小的数据规模进行快速计算。滴滴基于 Apache Flink 做了大量的优化,也增加了更多的功能,比如扩展 DDL、内置消息格式解析、扩展 UDX 等,使得 Flink 能够在滴滴的业务场景中发挥更大的作用。
大数据实时计算及 Apache Flink 年度Flink 年度学习资料大礼包,300+页实战应用精华总结!
本文由 Apache Flink Contributor 刘彪分享,本文对两大问题进行了详细的介绍,即什么是 Metrics、如何使用 Metrics,并对 Metrics 监控实战进行解释说明。
本文根据 Apache Flink 系列直播整理而成,由 Apache Flink Contributor、OPPO 大数据平台研发负责人张俊老师分享。主要内容如下: - 网络流控的概念与背景 - TCP的流控机制 - Flink TCP-based 反压机制(before V1.5) - Flink Credit-based 反压机制 (since V1.5) - 总结与思考
主要分享内容为 Flink Job 执行作业的流程,文章将从两个方面进行分享:一是如何从 Program 到物理执行计划,二是生成物理执行计划后该如何调度和执行。
本文根据 Apache Flink 系列直播整理而成,由 Apache Flink Contributor、360 数据开发高级工程师马庆祥老师分享。文章主要从如何为Flink量身定制的序列化框架、Flink序列化的最佳实践、Flink通信层的序列化以及问答环节四部分分享。
本文主要介绍 Flink on Yarn/K8s 的原理及应用实践,文章将从 Flink 架构、Flink on Yarn 原理及实践、Flink on Kubernetes 原理剖析三部分内容进行分享并对 Flink on Yarn/Kubernetes 中存在的部分问题进行了解答。
时间属性是流处理中最重要的一个方面,是流处理系统的基石之一,贯穿这三层 API。在 DataStream API 这一层中因为封装方面的原因,我们能够接触到时间的地方不是很多,所以我们将重点放在底层的 ProcessFunction 和最上层的 SQL/Table API。
人工智能应用场景中,Flink 在包括特征工程,在线学习,在线预测等方面都有一些独特优势,为了更好的支持人工智能的使用场景,Flink 社区以及各个生态都在努力。
人工智能应用场景中,Flink 在包括特征工程,在线学习,在线预测等方面都有一些独特优势,为了更好的支持人工智能的使用场景,Flink 社区以及各个生态都在努力。本文将介绍近期 Flink 在人工智能生态系统中的工作进展。
Flink 在机器学习这个领域发力较晚,社区版没有一个完整的机器学习算法库可以用,Alink[1]是目前 Flink 生态圈相对比较完整的机器学习算法库,Alink 也在往 Flink 社区贡献的路上。今天我主要讲的就是如何在 Zeppelin 里使用 Alink。
Flink 在机器学习这个领域发力较晚,社区版没有一个完整的机器学习算法库可以用,Alink[1]是目前 Flink 生态圈相对比较完整的机器学习算法库,Alink 也在往 Flink 社区贡献的路上。今天我主要讲的就是如何在 Zeppelin 里使用 Alink。
在本文中,我们想带你一起看看是否能够从现有机器中激发出更多的性能,以及如何实现?我们还会为不同于 PoC 代码的作业提供进一步的提示,并对未来的工作进行展望。
在本文中,我们想带你一起看看是否能够从现有机器中激发出更多的性能,以及如何实现?我们还会为不同于 PoC 代码的作业提供进一步的提示,并对未来的工作进行展望。
本文结合 Flink 1.9 版本,重点讲述 Flink Checkpoint 原理流程以及常见原因分析,让用户能够更好的理解 Flink Checkpoint,从而开发出更健壮的实时任务。
本文结合 Flink 1.9 版本,重点讲述 Flink Checkpoint 原理流程以及常见原因分析,让用户能够更好的理解 Flink Checkpoint,从而开发出更健壮的实时任务。
总结生产环境十大常见难点,10篇技术实战文章帮你完成故障识别、问题定位、性能优化等全链路过程,实现从基础概念的准确理解到上手实操的精准熟练,从容应对生产环境中的技术难题!
随着 Flink 社区的快速发展,其技术也逐渐走向成熟。在 2019 年,国内已经有大量的本土互联网公司开始采用 Apache Flink 作为主流的实时计算解决方案。同时,在全球范围内,优步、网飞、微软和亚马逊等国际互联网公司也逐渐开始使用 Apache Flink。
随着 Flink 在流式计算的应用场景逐渐成熟和流行,如果 Flink 能同时把批量计算的应用场景处理好,就能减少用户在使用 Flink 时开发和维护的成本,并且能够丰富 Flink 的生态。SQL 是批计算中比较常用的工具,所以 Flink 针对于批计算也以 SQL 为主要接口。本次分享主要介绍 Flink 对批处理的设计与 Hive 的集成。
本文由爱奇艺大数据服务负责人梁建煌分享,介绍爱奇艺如何基于 Apache Flink 技术打造实时计算平台,并通过业务应用案例分享帮助用户了解 Apache Flink 的技术特点及应用场景。
本文由爱奇艺大数据服务负责人梁建煌分享,介绍爱奇艺如何基于 Apache Flink 技术打造实时计算平台,并通过业务应用案例分享帮助用户了解 Apache Flink 的技术特点及应用场景。
随着 Flink 在流式计算的应用场景逐渐成熟和流行,如果 Flink 能同时把批量计算的应用场景处理好,就能减少用户在使用 Flink 时开发和维护的成本,并且能够丰富 Flink 的生态。SQL 是批计算中比较常用的工具,所以 Flink 针对于批计算也以 SQL 为主要接口。
单日总数据处理量超 10 万亿,峰值大概超过每秒 3 亿,OPPO 大数据平台研发负责人张俊揭秘 OPPO 基于 Apache Flink 构建实时数仓的实践,内容分为以下四个方面:建设背景、顶层设计、落地实践、未来展望。
单日总数据处理量超 10 万亿,峰值大概超过每秒 3 亿,OPPO 大数据平台研发负责人张俊揭秘 OPPO 基于 Apache Flink 构建实时数仓的实践,内容分为以下四个方面:建设背景、顶层设计、落地实践、未来展望。
在刚刚发布的 ApacheFlink 1.10 中,PyFlink 添加了对 Python UDFs 的支持。这意味着您可以从现在开始用 Python 编写 UDF 并扩展系统的功能。此外,本版本还支持 Python UDF 环境和依赖管理,因此您可以在 UDF 中使用第三方库,从而利用 Python 生态丰富的第三方库资源。
在刚刚发布的 ApacheFlink 1.10 中,PyFlink 添加了对 Python UDFs 的支持。这意味着您可以从现在开始用 Python 编写 UDF 并扩展系统的功能。此外,本版本还支持 Python UDF 环境和依赖管理,因此您可以在 UDF 中使用第三方库,从而利用 Python 生态丰富的第三方库资源。
大家好,本文为 Flink Weekly 的第七期,由李劲松整理,主要内容包括:近期社区开发进展,邮件问题答疑以及社区直播和相关技术博客。
大家好,本文为 Flink Weekly 的第七期,由李劲松整理,主要内容包括:近期社区开发进展,邮件问题答疑以及社区直播和相关技术博客。
如何更快速地预防或甄别可能的欺诈行为?如何从超大规模、高并发、多维度的数据中实现在线实时反欺诈?这些都是金融科技公司当下面临的主要难题。针对这一问题,玖富集团打造基于 Flink 的超大规模在线实时反欺诈系统,快速处理海量数据并实现良好的用户体验。
如何更快速地预防或甄别可能的欺诈行为?如何从超大规模、高并发、多维度的数据中实现在线实时反欺诈?这些都是金融科技公司当下面临的主要难题。针对这一问题,玖富集团打造基于 Flink 的超大规模在线实时反欺诈系统,快速处理海量数据并实现良好的用户体验。