ClickHouse 如何实现数据一致性
本文探讨了在 ClickHouse 中实现数据一致性的方法,主要关注 `ReplacingMergeTree` 引擎。该引擎允许更新已有数据,通过定期合并操作删除重复并保持最终一致性。然而,由于合并时间不可预测,单纯依赖此引擎无法确保实时一致性。为解决此问题,文章提出了四种策略:1)手动触发合并,但不建议频繁使用;2)使用 `FINAL` 查询,但在查询时合并数据,效率较低;3)通过标记和 `GroupBy` 查询实现一致性;4)在允许一定偏差的情况下,直接使用 `ReplacingMergeTree` 保持最终一致性。在实践中,推荐结合标记列和 `GroupBy` 以保证数据一致性。
阿里DataX极简教程
【5月更文挑战第1天】DataX是一个高效的数据同步工具,用于在各种数据源之间迁移数据,如MySQL到另一个MySQL或MongoDB。它的工作流程包括read、write和setting步骤,通过Framework协调多线程处理。其核心架构包括Job、Task和TaskGroup,支持并发执行。DataX支持多种数据源,如RDBMS、阿里云数仓、NoSQL和无结构化数据存储。例如,从MySQL读取数据并同步到ClickHouse的实践操作包括下载DataX、配置任务文件和执行同步任务。