必备性能测试面试题解析 | 高并发与瓶颈分析
双11、抢票等高并发场景下,系统易现登录慢、下单延迟等问题。本文解析性能瓶颈(CPU、内存、数据库等)、面试高频题及优化方案,涵盖JMeter高级用法、TPS/QPS指标分析、分布式压测与全链路监控,助力测试工程师掌握从设计到落地的全流程能力,提升面试通过率与实战水平。
面试性能测试总被刷?学员真实遇到的高频问题全解析!
面试常被性能测试题难住?其实考的不是工具,而是分析思维。从脚本编写到瓶颈定位,企业更看重系统理解与实战能力。本文拆解高频面试题,揭示背后考察逻辑,并通过真实项目训练,帮你构建性能测试完整知识体系,实现从“会操作”到“能解决问题”的跨越。
JMeter 分布式压测指南:深入挖掘系统性能极限
本文针对单机压测的性能瓶颈,分享了JMeter分布式压测的实战经验。通过Master-Slave架构突破单机限制,结合Ansible实现高效节点管理,详细介绍了从需求分析、脚本设计到环境部署的全流程解决方案,为高并发性能测试提供实用指导。
性能测试指标拟定参考
本文介绍性能测试关键指标与实施要点,涵盖用户数、业务量、核心场景及性能指标(如TPS、响应时间、波动率)的调查方法,指导如何科学评估系统处理能力与稳定性。
大模型性能测试实战指南:从原理到落地的全链路解析
本文系统解析大模型性能测试的核心方法,涵盖流式响应原理、五大关键指标(首Token延迟、吐字率等)及测试策略,提供基于Locust的压测实战方案,并深入性能瓶颈分析与优化技巧。针对多模态新挑战,探讨混合输入测试与资源优化
大模型性能测试完全指南:从原理到实践
本文介绍了大模型性能测试的核心价值与方法,涵盖流式响应机制、PD分离架构、五大关键指标(如首Token延迟、吐字率等),并通过实战演示如何使用Locust进行压力测试。同时探讨了多模态测试的挑战与优化方向,帮助测试工程师成长为AI系统性能的“诊断专家”。