帮忙看下机器学习PAI这是啥原因啊?

帮忙看下机器学习PAI这是啥原因啊?Traceback (most recent call last):
File "/data/soft/anaconda3/envs/xurec/lib/python3.7/site-packages/tensorflow_core/python/client/session.py", line 1365, in _do_call
return fn(*args)
File "/data/soft/anaconda3/envs/xurec/lib/python3.7/site-packages/tensorflow_core/python/client/session.py", line 1350, in _run_fn
target_list, run_metadata)
File "/data/soft/anaconda3/envs/xurec/lib/python3.7/site-packages/tensorflow_core/python/client/session.py", line 1443, in _call_tf_sessionrun
run_metadata)
tensorflow.python.framework.errors_impl.InvalidArgumentError: 2 root error(s) found.
(0) Invalid argument: {{function_node inference_Dataset_map_CSVInput._parse_csv_92}} Quoted field has to end with quote followed by delim or end
[[{{node decode_csv}}]]
[[IteratorGetNext]]
(1) Invalid argument: {{function_node
inference_Dataset_map_CSVInput._parse_csv_92}} Quoted field has to end with quote followed by delim or end
[[{{node decode_csv}}]]
[[IteratorGetNext]]
[[input_layer/project_embedding/project_embedding_weights/Prod/_1345]]
0 successful operations.
0 derived errors ignored.

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
File "../easy_rec/python/train_eval.py", line 165, in
args.check_mode)
File "/data/soft/anaconda3/envs/xurec/lib/python3.7/site-packages/easy_rec-0.6.1-py3.7.egg/easy_rec/python/main.py", line 333, in _train_and_evaluate_impl
estimator_train.train_and_evaluate(estimator, train_spec, eval_spec)
File "/data/soft/anaconda3/envs/xurec/lib/python3.7/site-packages/easy_rec-0.6.1-py3.7.egg/easy_rec/python/compat/estimator_train.py", line 84, in train_and_evaluate
result = executor.run()
File "/data/soft/anaconda3/envs/xurec/lib/python3.7/site-packages/tensorflow_estimator/python/estimator/training.py", line 613, in run
return self.run_local()
File "/data/soft/anaconda3/envs/xurec/lib/python3.7/site-packages/tensorflow_estimator/python/estimator/training.py", line 714, in run_local
saving_listeners=saving_listeners)
File "/data/soft/anaconda3/envs/xurec/lib/python3.7/site-packages/easy_rec-0.6.1-py3.7.egg/easy_rec/python/model/easy_rec_estimator.py", line 92, in train
max_steps, saving_listeners)
File "/data/soft/anaconda3/envs/xurec/lib/python3.7/site-packages/tensorflow_estimator/python/estimator/estimator.py", line 370, in train
loss = self._train_model(input_fn, hooks, saving_listeners)
File "/data/soft/anaconda3/envs/xurec/lib/python3.7/site-packages/tensorflow_estimator/python/estimator/estimator.py", line 1161, in _train_model
return self._train_model_default(input_fn, hooks, saving_listeners)
File "/data/soft/anaconda3/envs/xurec/lib/python3.7/site-packages/tensorflow_estimator/python/estimator/estimator.py", line 1195, in _train_model_default
saving_listeners)
File "/data/soft/anaconda3/envs/xurec/lib/python3.7/site-packages/tensorflow_estimator/python/estimator/estimator.py", line 1494, in _train_with_estimatorspec , loss = mon_sess.run([estimator_spec.train_op, estimator_spec.loss])
File "/data/soft/anaconda3/envs/xurec/lib/python3.7/site-packages/tensorflow_core/python/training/monitored_session.py", line 754, in run
run_metadata=run_metadata)
File "/data/soft/anaconda3/envs/xurec/lib/python3.7/site-packages/tensorflow_core/python/training/monitored_session.py", line 1259, in run
run_metadata=run_metadata)
File "/data/soft/anaconda3/envs/xurec/lib/python3.7/site-packages/tensorflow_core/python/training/monitored_session.py", line 1360, in run
raise six.reraise(original_exc_info)
File "/data/soft/anaconda3/envs/xurec/lib/python3.7/site-packages/six.py", line 719, in reraise
raise value
File "/data/soft/anaconda3/envs/xurec/lib/python3.7/site-packages/tensorflow_core/python/training/monitored_session.py", line 1345, in run
return self._sess.run(
args, kwargs)
File "/data/soft/anaconda3/envs/xurec/lib/python3.7/site-packages/tensorflow_core/python/training/monitored_session.py", line 1418, in run
run_metadata=run_metadata)
File "/data/soft/anaconda3/envs/xurec/lib/python3.7/site-packages/tensorflow_core/python/training/monitored_session.py", line 1176, in run
return self._sess.run(*args,
kwargs)
File "/data/soft/anaconda3/envs/xurec/lib/python3.7/site-packages/tensorflow_core/python/client/session.py", line 956, in run
run_metadata_ptr)
File "/data/soft/anaconda3/envs/xurec/lib/python3.7/site-packages/tensorflow_core/python/client/session.py", line 1180, in _run
feed_dict_tensor, options, run_metadata)
File "/data/soft/anaconda3/envs/xurec/lib/python3.7/site-packages/tensorflow_core/python/client/session.py", line 1359, in _do_run
run_metadata)
File "/data/soft/anaconda3/envs/xurec/lib/python3.7/site-packages/tensorflow_core/python/client/session.py", line 1384, in _do_call
raise type(e)(node_def, op, message)
tensorflow.python.framework.errors_impl.InvalidArgumentError: 2 root error(s) found.
(0) Invalid argument: Quoted field has to end with quote followed by delim or end
[[{{node decode_csv}}]]
[[IteratorGetNext]]
(1) Invalid argument: Quoted field has to end with quote followed by delim or end
[[{{node decode_csv}}]]
[[IteratorGetNext]]
[[input_layer/project_embedding/project_embedding_weights/Prod/_1345]]
0 successful operations.
0 derived errors ignored.这种是不是去掉里面的引号啊?6c0eba5e6e9e4beae4c40270e6b8d863.png

展开
收起
真的很搞笑 2023-10-19 00:43:16 92 分享 版权
3 条回答
写回答
取消 提交回答
  • 面对过去,不要迷离;面对未来,不必彷徨;活在今天,你只要把自己完全展示给别人看。

    是的,这个错误是因为在CSV文件中,某些字段的值中包含了引号,但是在处理这些字段时,程序没有正确地处理引号,导致了这个错误。
    解决这个问题的方法是,确保CSV文件中的所有字段值都正确地被引号包围,并且在处理这些字段时,程序能够正确地处理引号。具体来说,可以使用Python的csv模块的QUOTE_ALL模式来处理所有的字段值,或者在处理字段值时,使用csv.readerQUOTE_NONE模式,并且在需要的时候手动添加引号。
    另外,如果CSV文件中的某些字段值是需要被解析为日期或者时间的,那么在处理这些字段时,还需要注意日期和时间的格式。例如,日期和时间的格式可能需要遵循ISO 8601标准,或者遵循其他特定的格式。

    2023-10-19 13:15:17
    赞同 展开评论
  • 对的,最好去掉引号。用 \u0001来分割,此回答整理自钉群“【EasyRec】推荐算法交流群”

    2023-10-19 08:57:37
    赞同 展开评论
  • 北京阿里云ACE会长

    CSV 文件中的某个字段没有正确地结束引号,或者没有按照规定的格式使用分隔符。错误信息中提到了 "Quoted field has to end with quote followed by delim or end",这意味着需要引号结束的字段没有正确地使用引号,或者没有按照规定的格式使用分隔符。
    为了解决这个问题,您需要检查您的 CSV 文件,确保所有的字段都按照正确的格式包含引号和分隔符。如果可能的话,您可以尝试使用其他的 CSV 解析库,例如 pandas,来解析 CSV 文件,因为它们可能会有更强大的错误处理和校验功能。

    2023-10-19 07:14:51
    赞同 展开评论

人工智能平台 PAI(Platform for AI,原机器学习平台PAI)是面向开发者和企业的机器学习/深度学习工程平台,提供包含数据标注、模型构建、模型训练、模型部署、推理优化在内的AI开发全链路服务,内置140+种优化算法,具备丰富的行业场景插件,为用户提供低门槛、高性能的云原生AI工程化能力。

还有其他疑问?
咨询AI助理