ML:LGBMClassifier、XGBClassifier和CatBoostClassifier的feature_importances_计算方法源代码解读之详细攻略

简介: ML:LGBMClassifier、XGBClassifier和CatBoostClassifier的feature_importances_计算方法源代码解读之详细攻略


目录

LGBMClassifier、XGBClassifier和CatBoostClassifier的feature_importances_计算方法源代码解读之详细攻略

LGBMClassifier

XGBClassifier

CatBoostClassifier


LGBMClassifier、XGBClassifier和CatBoostClassifier的feature_importances_计算方法源代码解读之详细攻略

LGBMClassifier

LGBMClassifier.feature_importances_函数,采用split方式计算

LGBMC.feature_importances_

importance_type='split',

    def feature_importances_(self):

        """Get feature importances.

        Note

        ----

        Feature importance in sklearn interface used to normalize to 1,it's deprecated after 2.0.4 and is the same as Booster.feature_importance() now.

        ``importance_type`` attribute is passed to the function to configure the type of importance values to be extracted.

        """

        if self._n_features is None:

            raise LGBMNotFittedError('No feature_importances found. Need to call fit beforehand.')

        return self.booster_.feature_importance(importance_type=self.importance_type)

    @property
    def booster_(self):
        """Get the underlying lightgbm Booster of this model."""
        if self._Booster is None:
            raise LGBMNotFittedError('No booster found. Need to call fit beforehand.')
        return self._Booster

    def num_feature(self):

        """Get number of features.

        Returns

        -------

        num_feature : int

            The number of features.

        """

        out_num_feature = ctypes.c_int(0)

        _safe_call(_LIB.LGBM_BoosterGetNumFeature(

            self.handle,

            ctypes.byref(out_num_feature)))

        return out_num_feature.value

self.booster_.feature_importance
(importance_type=

self.importance_type)

    def feature_importance(self, importance_type='split', iteration=None):

        """Get feature importances.

        Parameters

        ----------

        importance_type : string, optional (default="split"). How the importance is calculated.  字符串,可选(默认值=“split”)。如何计算重要性。

If "split", result contains numbers of times the feature is used in a model. 如果“split”,则结果包含该特征在模型中使用的次数

If "gain", result contains total gains of splits which use the feature.如果“gain”,则结果包含使用该特征的拆分的总增益。

        iteration : int or None, optional (default=None).Limit number of iterations in the feature importance calculation. If None, if the best iteration exists, it is used; otherwise, all trees are used.  If <= 0, all trees are used (no limits).

        Returns

        -------

        result : numpy array

            Array with feature importances.

        """

        if iteration is None:

            iteration = self.best_iteration

        if importance_type == "split":

            importance_type_int = 0

        elif importance_type == "gain":

            importance_type_int = 1

        else:

            importance_type_int = -1

        result = np.zeros(self.num_feature(), dtype=np.float64)

        _safe_call(_LIB.LGBM_BoosterFeatureImportance(

            self.handle,

            ctypes.c_int(iteration),

            ctypes.c_int(importance_type_int),

            result.ctypes.data_as(ctypes.POINTER(ctypes.c_double))))

        if importance_type_int == 0:

            return result.astype(int)

        else:

            return result

XGBClassifier

XGBClassifier.feature_importances_函数,采用weight方式计算

XGBC.

feature_importances_

importance_type="weight"   # 默认 gain、weight、cover、total_gain、total_cover 

    def feature_importances_(self):

        """

        Feature importances property

        .. note:: Feature importance is defined only for tree boosters

            Feature importance is only defined when the decision tree model is chosen as base learner (`booster=gbtree`). It is not defined for other base learner types, such as linear learners .仅当选择决策树模型作为基础学习者(`booster=gbtree`)时,才定义特征重要性。它不适用于其他基本学习者类型,例如线性学习者(`booster=gblinear`).

        Returns

        -------

        feature_importances_ : array of shape ``[n_features]``

        """

        if getattr(self, 'booster', None) is not None and self.booster != 'gbtree':

            raise AttributeError('Feature importance is not defined for Booster type {}'

                                 .format(self.booster))

        b = self.get_booster()

        score = b.get_score(importance_type=self.importance_type)

        all_features = [score.get(f, 0.) for f in b.feature_names]

        all_features = np.array(all_features, dtype=np.float32)

        return all_features / all_features.sum()

 

get_score

    def get_score(self, fmap='', importance_type='weight'):

        """Get feature importance of each feature.

        Importance type can be defined as:

  •         * 'weight': the number of times a feature is used to split the data across all trees.一个特征用于在所有树上分割数据的次数
  •         * 'gain': the average gain across all splits the feature is used in.使用该特征的所有拆分的平均增益。
  •         * 'cover': the average coverage across all splits the feature is used in.使用该特征的所有拆分的平均覆盖率。
  •         * 'total_gain': the total gain across all splits the feature is used in.该特征在所有分割中使用的总增益。
  •         * 'total_cover': the total coverage across all splits the feature is used in.使用该特征的所有拆分的总覆盖率。

        .. note:: Feature importance is defined only for tree boosters

            Feature importance is only defined when the decision tree model is chosen as base learner (`booster=gbtree`). It is not defined for other base learner types, such as linear learners (`booster=gblinear`).

        Parameters

        ----------

        fmap: str (optional)

           The name of feature map file.

        importance_type: str, default 'weight'

            One of the importance types defined above.

        """

        if getattr(self, 'booster', None) is not None and self.booster not in {'gbtree', 'dart'}: raise ValueError('Feature importance is not defined for Booster type {}' .format(self.booster))

        allowed_importance_types = ['weight', 'gain', 'cover', 'total_gain', 'total_cover']

        if importance_type not in allowed_importance_types: msg = ("importance_type mismatch, got '{}', expected one of " + repr(allowed_importance_types))

            raise ValueError(msg.format(importance_type))

        # if it's weight, then omap stores the number of missing values

        if importance_type == 'weight':

            # do a simpler tree dump to save time

            trees = self.get_dump(fmap, with_stats=False)

            fmap = {}

            for tree in trees:

                for line in tree.split('\n'):

                    # look for the opening square bracket

                    arr = line.split('[')

                    # if no opening bracket (leaf node), ignore this line

                    if len(arr) == 1:

                        continue

                    # extract feature name from string between []

                    fid = arr[1].split(']')[0].split('<')[0]

                    if fid not in fmap:

                        # if the feature hasn't been seen yet

                        fmap[fid] = 1

                    else:

                        fmap[fid] += 1

            return fmap

        else:

            average_over_splits = True

            if importance_type == 'total_gain':

                importance_type = 'gain'

                average_over_splits = False

            elif importance_type == 'total_cover':

                importance_type = 'cover'

                average_over_splits = False

            trees = self.get_dump(fmap, with_stats=True)

            importance_type += '='

            fmap = {}

            gmap = {}

            for tree in trees:

                for line in tree.split('\n'):

                    # look for the opening square bracket

                    arr = line.split('[')

                    # if no opening bracket (leaf node), ignore this line

                    if len(arr) == 1:

                        continue

                    # look for the closing bracket, extract only info within that bracket

                    fid = arr[1].split(']')

                    # extract gain or cover from string after closing bracket

                    g = float(fid[1].split(importance_type)[1].split(',')[0])

                    # extract feature name from string before closing bracket

                    fid = fid[0].split('<')[0]

                    if fid not in fmap:

                        # if the feature hasn't been seen yet

                        fmap[fid] = 1

                        gmap[fid] = g

                    else:

                        fmap[fid] += 1

                        gmap[fid] += g

            # calculate average value (gain/cover) for each feature

            if average_over_splits:

                for fid in gmap:

                    gmap[fid] = gmap[fid] / fmap[fid]

            return gmap

CatBoostClassifier

CatBoostClassifier.feature_importances_函数,采用is_groupwise_metric(loss)方式计算

CatC.feature_importances_     def feature_importances_(self):
        loss = self._object._get_loss_function_name()
        if loss and is_groupwise_metric(loss):
            return np.array(getattr(self, "_loss_value_change", None))
        else:
            return np.array(getattr(self, "_prediction_values_change", None))

      CatBoost简单地利用了在正常情况下(当我们包括特征时)使用模型获得的度量(损失函数)与不使用该特征的模型(模型建立大约与此功能从所有的树在合奏)。差别越大,特征就越重要。


相关文章
|
数据可视化 PyTorch 算法框架/工具
量化自定义PyTorch模型入门教程
在以前Pytorch只有一种量化的方法,叫做“eager mode qunatization”,在量化我们自定定义模型时经常会产生奇怪的错误,并且很难解决。但是最近,PyTorch发布了一种称为“fx-graph-mode-qunatization”的方方法。在本文中我们将研究这个fx-graph-mode-qunatization”看看它能不能让我们的量化操作更容易,更稳定。
256 0
|
机器学习/深度学习 算法 数据挖掘
Sentieon | 每周文献-Benchmark and Method Study(基准与方法研究)-第八期
Sentieon | 每周文献-Benchmark and Method Study(基准与方法研究)-第八期
101 0
|
机器学习/深度学习 数据采集 PyTorch
pytorch教程 (四)- 损失函数
pytorch教程 (四)- 损失函数
133 0
|
编解码 并行计算 算法
MMdetection框架速成系列 第01部分:学习路线图与步骤+优先学习的两个目标检测模型代码+loss计算流程+遇到问题如何求助+Anaconda3下的安装教程(mmdet+mmdet3d)
Tip:目前 MMDetection 实现的算法中主要包括 one-stage 和 two-stage 算法,而 two-stage 算法可以简单认为是 one-stage + pool + one-stage 步骤。
981 0
|
Python
Hap-Eval:Sentieon团队开发的开源结构变异SV准确率评估工具
Hap-eval基于单倍型 (haplotype) 对两组SV结果进行比较,首先会将比较区块内的SV拼接成单倍型序列,如果SV的结果中有定相信息,在这一步也可以被利用;然后这些单倍型序列被用来建立一个矩阵,进行结果判断。
172 0
Hap-Eval:Sentieon团队开发的开源结构变异SV准确率评估工具
|
PyTorch 算法框架/工具
PyG (PyTorch Geometric) Dropbox系图数据集无法下载的解决方案(AMiner, DBLP, IMDB, LastFM)(持续更新ing...)
本文主要关注PyG官方提供的数据集中,因为数据下载源是Dropbox,所以不能直接下载的解决方案。
|
机器学习/深度学习 Dart 算法
ML之lightgbm.sklearn:LGBMClassifier函数的简介、具体案例、调参技巧之详细攻略
ML之lightgbm.sklearn:LGBMClassifier函数的简介、具体案例、调参技巧之详细攻略
|
机器学习/深度学习 算法
基于 mlr 包的逻辑回归算法介绍与实践(上)(二)
本期介绍的是 《Machine Learning with R, tidyverse, and mlr》 一书的第四章——逻辑回归(logistic regression)。逻辑回归是基于概率分类的有监督学习算法,它依赖于直线方程,产生的模型非常容易解释和交流。在其最简单的形式中,逻辑回归被用来预测二分类问题,但算法的变体也可以处理多个类。
605 0
基于 mlr 包的逻辑回归算法介绍与实践(上)(二)
|
机器学习/深度学习 算法
基于 mlr 包的逻辑回归算法介绍与实践(上)(一)
本期介绍的是 《Machine Learning with R, tidyverse, and mlr》 一书的第四章——逻辑回归(logistic regression)。逻辑回归是基于概率分类的有监督学习算法,它依赖于直线方程,产生的模型非常容易解释和交流。在其最简单的形式中,逻辑回归被用来预测二分类问题,但算法的变体也可以处理多个类。
254 0
基于 mlr 包的逻辑回归算法介绍与实践(上)(一)
ML:LGBMClassifier、XGBClassifier和CatBoostClassifier的feature_importances_计算方法源代码解读之详细攻略
ML:LGBMClassifier、XGBClassifier和CatBoostClassifier的feature_importances_计算方法源代码解读之详细攻略