还原二叉树

简介: 数据结构

给定一棵二叉树的先序遍历序列和中序遍历序列,要求计算该二叉树的高度。

输入格式:
输入首先给出正整数N(≤50),为树中结点总数。下面两行先后给出先序和中序遍历序列,均是长度为N的不包含重复英文字母(区别大小写)的字符串。

输出格式:
输出为一个整数,即该二叉树的高度。

输入样例:
9
ABDFGHIEC
FDHGIBEAC
输出样例:
5
代码长度限制
16 KB
时间限制
400 ms
内存限制
64 MB

#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <stack>
#include <queue>
using namespace std;

const int N=100;
typedef struct edge* node;

struct edge
{
    char data;
    node l;
    node r;
};

//通过先序序列和中序序列构造二叉树 
node insert(char *a, char *b, int n)
{
    int i;
    int n1=0, n2=0;
    int m1=0, m2=0;
    char la[N], ra[N];
    char lb[N], rb[N];
    node BT=NULL;
    if(n==0)
        return NULL;
    BT=(node) malloc(sizeof(struct edge));
    if(!BT)
        return NULL;
    memset(BT,0,sizeof(edge));
    BT->data=a[0];
    for(i=0;i<n;i++)
    {
        if(i<=n1&&(b[i]!=a[0]))
            lb[n1++]=b[i];
        else if(b[i]!=a[0])
            rb[n2++]=b[i];
    }
    for(i=1;i<n;i++)
    {
        if(i<=n1)
            la[m1++]=a[i];
        else
            ra[m2++]=a[i];
    }
    BT->l=insert(la, lb, n1);
    BT->r=insert(ra, rb, n2);
    return BT;
}

//通过后序序列和中序序列构造二叉树 
node push(char *a, char *b, int n)
{
    int i;
    int n1=0, n2=0;
    int m1=0, m2=0;
    char la[N], ra[N];
    char lb[N], rb[N];
    node BT=NULL;
    if(n==0)
        return NULL;
    BT=(node) malloc(sizeof(struct edge));
    if(!BT)
        return NULL;
    memset(BT,0,sizeof(edge));
    BT->data=a[n-1];
    for(int i=0;i<n;i++)
    {
        if(i<=n1&&(b[i]!=a[0]))
            lb[n1++]=b[i];
        else if(b[i]!=a[0])
            rb[n2++]=b[i];
    }
    for(i=0;i<n-1;i++)
    {
        if(i<=n1)
            la[m1++]=a[i];
        else
            ra[m2++]=a[i];
    }
    BT->l=push(la, lb, n1);
    BT->r=push(ra, rb, n2);
    return BT;
}

//先序遍历 
void Preorder(node BT)
{
    if(BT==NULL)
        return;
    printf("%c ", BT->data);
    Preorder(BT->l);
    Preorder(BT->r);
}

//非递归的先序遍历 
//void 

//中序遍历
void Inorder(node BT)
{
    if(BT==NULL)
        return;
    Inorder(BT->l);
    printf("%c ", BT->data);
    Inorder(BT->r);
}

//非递归的中序遍历
//void

//后序遍历
void Postorder(node BT)
{
    if(BT==NULL)
        return;
    Postorder(BT->l);
    Postorder(BT->r);
    printf("%c ", BT->data);
}

//非递归的后序遍历 
//void 

//层序遍历
void  Traversal(node BT)
{
    queue<char> q;
    if(!BT) return;
    q.push(BT->data);
    while(q.size())
    {
        printf("%c ", q.front());
        q.pop();
        if(BT->l) q.push(BT->l->data);
        if(BT->r) q.push(BT->r->data);
    }
}

//计算二叉树树高 
int high(node BT)
{
    if(BT)
    {
        int hl=high(BT->l);
        int hr=high(BT->r);
        int maxh=(hl>hr)?hl:hr;
        return maxh+1;
    }
    else return 0;
}

//输出二叉树的叶子结点 
void yezi(node BT)
{
    if(BT)
    {
        if(!BT->l&&!BT->r) 
            printf("%c ", BT->data);
        yezi(BT->l);
        yezi(BT->r);
    } 
} 


int main()
{
    int n;
    char a[N], b[N];
    node BT;
    BT=NULL;
    scanf("%d", &n);
    getchar();
    for(int i=0;i<n;i++)
        scanf("%c", &a[i]);
    getchar();
    for(int i=0;i<n;i++)
        scanf("%c", &b[i]);
    BT=insert(a, b, n);
    int t=high(BT);
    printf("%d\n", t);
    return 0;
} 
相关实践学习
部署高可用架构
本场景主要介绍如何使用云服务器ECS、负载均衡SLB、云数据库RDS和数据传输服务产品来部署多可用区高可用架构。
负载均衡入门与产品使用指南
负载均衡(Server Load Balancer)是对多台云服务器进行流量分发的负载均衡服务,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。 本课程主要介绍负载均衡的相关技术以及阿里云负载均衡产品的使用方法。
相关文章
|
2天前
|
存储 C++
二叉树的操作(C++实现)
二叉树的操作(C++实现)
|
2天前
|
Serverless
二叉树的常见操作
二叉树的常见操作
篇二:二叉树-创建、重建、
篇二:二叉树-创建、重建、
|
9月前
|
算法
算法训练Day22|235. 二叉搜索树的最近公共祖先 ● 701.二叉搜索树中的插入操作 ● 450.删除二叉搜索树中的节点
算法训练Day22|235. 二叉搜索树的最近公共祖先 ● 701.二叉搜索树中的插入操作 ● 450.删除二叉搜索树中的节点
|
11月前
|
算法 索引
【力扣】根据二叉树的前序和中序遍历结果还原该二叉树(以及后序和中序还原)
【力扣】根据二叉树的前序和中序遍历结果还原该二叉树(以及后序和中序还原)
144 0
【力扣】根据二叉树的前序和中序遍历结果还原该二叉树(以及后序和中序还原)
|
11月前
|
C语言
二叉树的相关操作
本文主要是针对C语言数据结构的二叉树的相关操作包括遍历、线索化等进行介绍。
10762 4
二叉树的相关操作
|
存储 前端开发 JavaScript
将数组还原为树的各种姿势
将数组还原为树的各种姿势
将数组还原为树的各种姿势
|
存储
LeetCode 98验证二叉搜素树(中序遍历)&99恢复二叉搜索树
给定一个二叉树,判断其是否是一个有效的二叉搜索树。
94 0
LeetCode 98验证二叉搜素树(中序遍历)&99恢复二叉搜索树
|
存储
总结了一些二叉树操作的干货……
导读:二叉树是一种经典的数据结构,其概念本身不难理解,但因其结构的特殊性,许多操作都有着非常精妙的技巧。结合最近LeetCode中的一些相关题目,简要记录一些个人觉得比较巧妙的编程实现。
156 0
总结了一些二叉树操作的干货……