Seaborn

简介: Seaborn

官方地址:http://seaborn.pydata.org/index.html Seaborn其实是在matplotlib的基础上进行了更高级的API封装,从而使得作图更加容易,在大多数情况下使用seaborn就能做出很具有吸引力的图,而使用matplotlib就能制作具有更多特色的图。应该把Seaborn视为matplotlib的补充,而不是替代物。 Python中的一个制图工具库,可以制作出吸引人的、信息量大的统计图

  • 在Matplotlib上构建,支持numpy和pandas的数据结构可视化。
  • 多个内置主题及颜色主题
  • 可视化单一变量、二维变量用于比较数据集中各变量的分布情况
  • 可视化线性回归模型中的独立变量及不独立变量
案例演示
import numpy as np
import pandas as pd
from pandas import Series , DataFrame
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
df = sns.load_dataset('flights')
df.head()

网络异常,图片无法展示
|

df.shape
(144, 3)
# 对数据表进行重塑  第一个index是重塑的新表的索引名称是什么,第二个columns是重塑的新表的列名称是什么,
#一般来说就是被统计列的分组,第三个values就是生成新列的值应该是多少
df = df.pivot(index='month',columns='year',values='passengers')
df
相关文章
|
2月前
|
数据可视化 DataX Python
Seaborn 教程-绘图函数
Seaborn 教程-绘图函数
87 8
|
2月前
Seaborn 教程-主题(Theme)
Seaborn 教程-主题(Theme)
155 7
|
2月前
|
Python
Seaborn 教程-模板(Context)
Seaborn 教程-模板(Context)
58 4
|
2月前
|
数据可视化 Python
Seaborn 教程
Seaborn 教程
64 5
|
2月前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
108 8
|
3月前
|
移动开发 数据可视化 数据挖掘
利用Python实现数据可视化:以Matplotlib和Seaborn为例
【10月更文挑战第37天】本文旨在引导读者理解并掌握使用Python进行数据可视化的基本方法。通过深入浅出的介绍,我们将探索如何使用两个流行的库——Matplotlib和Seaborn,来创建引人入胜的图表。文章将通过具体示例展示如何从简单的图表开始,逐步过渡到更复杂的可视化技术,帮助初学者构建起强大的数据呈现能力。
|
4月前
|
数据可视化 数据挖掘 Python
Seaborn 库创建吸引人的统计图表
【10月更文挑战第11天】本文介绍了如何使用 Seaborn 库创建多种统计图表,包括散点图、箱线图、直方图、线性回归图、热力图等。通过具体示例和代码,展示了 Seaborn 在数据可视化中的强大功能和灵活性,帮助读者更好地理解和应用这一工具。
60 3
|
4月前
|
数据可视化 数据挖掘 API
Python中的数据可视化利器:Matplotlib与Seaborn对比解析
在Python数据科学领域,数据可视化是一个重要环节。它不仅帮助我们理解数据,更能够让我们洞察数据背后的故事。本文将深入探讨两种广泛使用的数据可视化库——Matplotlib与Seaborn,通过对比它们的特点、优劣势以及适用场景,为读者提供一个清晰的选择指南。无论是初学者还是有经验的开发者,都能从中找到有价值的信息,提升自己的数据可视化技能。
238 3
|
5月前
|
机器学习/深度学习 数据采集 数据可视化
跟着penguins案例学Seaborn之Pairplot
跟着penguins案例学Seaborn之Pairplot
165 1
|
5月前
|
Linux
跟着mpg案例学Seaborn之Jointplot
跟着mpg案例学Seaborn之Jointplot
94 1

热门文章

最新文章