InfoGraph:基于互信息最大化的无监督和半监督图表示学习

简介: InfoGraph:基于互信息最大化的无监督和半监督图表示学习

论文标题:InfoGraph: Unsupervised and Semi-supervised Graph-Level


Representation Learning via Mutual Information Maximization


论文链接:https://arxiv.org/abs/1908.01000


论文来源:ICLR 2020


代码地址:https://github.com/fanyun-sun/InfoGraph


之前的相关博客:


MINE:随机变量互信息的估计方法


Deep InfoMax:基于互信息最大化的表示学习


一、概述


本文提出的InfoGraph是一种基于互信息最大化的图对比学习方法,与Deep Graph Infomax(DIM)相比,虽然都是基于互信息最大化的方法,InfoGraph更加侧重于图的表示学习,而DIM偏重于节点的表示学习。


过去的图相关的任务大多是监督学习任务,而图数据的标注通常是困难的和繁琐的,而对于大量的无标注数据未能有效利用。本文提出的InfoGraph侧重于图的无监督表示学习,另外InfoGraph*是在InfoGraph基础上拓展的半监督学习方法。InfoGraph*应用一个类似于Mean-Teacher方法的student-teacher框架,通过让一个encoder学习另一个encoder(最大化两者的互信息)从而在半监督任务上产生了较好的效果。


二、方法


  1. 问题定义


  • 无监督图表示学习

image.png


  1. InfoGraph


首先采用一个encoder获得图的节点表示(patch表示),然后使用readout函数来聚合获得的节点表示以得到图的表示。本文采用的encoder通过聚合邻居节点的特征来获得节点的表示:


image.png

image.png

image.png

                                                   InfoGraph算法


  1. 半监督InfoGraph


一个比较直接的将无监督的方法拓展成半监督的方式是将无监督的损失作为有监督目标的正则项,如下:


image.pngimage.png

image.png

                                       InfoGraph*


这种半监督的InfoGraph方法称为InfoGraph*。注意,InfoGraph*可以看作是student-teacher框架的一个特殊实例。然而,与最近的student-teacher半监督学习方法不同,这些方法使得学生模型的预测与教师模型相似,而InfoGraph*通过在表示的各层上的互信息最大化来实现知识从教师模型向学生模型的转移。


三、实验


本文在MUTAG, PTC, REDDIT-BINARY, REDDIT-MULTI-5K, IMDB-BINARY和IMDB-MULTI一共6个数据集上进行分类任务实验,在QM9数据集上进行半监督实验。实验结果如下:


image.png

                                               实验


image.png

                                            实验

相关文章
|
2月前
|
机器学习/深度学习 资源调度 算法
增强回归模型的可解释性:基于MCMC的混合建模与特征选择方法研究
本文介绍了一种基于正态回归混合模型的通用实现方法,结合MCMC算法,在参数估计的同时实现模型选择和特征选择。该方法突破了正态性假设限制,适用于非正态和非线性数据集,并通过回归混合和特征选择机制提升模型可解释性和性能。实验结果表明,该模型在复杂数据分类和参数估计方面表现出色,错误率仅为6%。此方法在客户群体识别、医疗数据分析等领域具有广泛应用价值。
85 10
增强回归模型的可解释性:基于MCMC的混合建模与特征选择方法研究
|
5月前
|
机器学习/深度学习 调度 知识图谱
TimeDART:基于扩散自回归Transformer 的自监督时间序列预测方法
近年来,深度神经网络成为时间序列预测的主流方法。自监督学习通过从未标记数据中学习,能够捕获时间序列的长期依赖和局部特征。TimeDART结合扩散模型和自回归建模,创新性地解决了时间序列预测中的关键挑战,在多个数据集上取得了最优性能,展示了强大的泛化能力。
154 0
TimeDART:基于扩散自回归Transformer 的自监督时间序列预测方法
|
7月前
|
机器学习/深度学习 运维 算法
监督算法和无监督算法之间的区别
【8月更文挑战第23天】
223 0
|
10月前
|
机器学习/深度学习 异构计算
Gradformer: 通过图结构归纳偏差提升自注意力机制的图Transformer
Gradformer,新发布的图Transformer,引入指数衰减掩码和可学习约束,强化自注意力机制,聚焦本地信息并保持全局视野。模型整合归纳偏差,增强图结构建模,且在深层架构中表现稳定。对比14种基线模型,Gradformer在图分类、回归任务中胜出,尤其在NCI1、PROTEINS、MUTAG和CLUSTER数据集上准确率提升明显。此外,它在效率和深层模型处理上也表现出色。尽管依赖MPNN模块和效率优化仍有改进空间,但Gradformer已展现出在图任务的强大潜力。
230 2
|
10月前
线性回归前特征离散化可简化模型、增强稳定性、选有意义特征、降低过拟合、提升计算效率及捕捉非线性关系。
【5月更文挑战第2天】线性回归前特征离散化可简化模型、增强稳定性、选有意义特征、降低过拟合、提升计算效率及捕捉非线性关系。但过多离散特征可能增加复杂度,丢失信息,影响模型泛化和精度。需谨慎平衡离散化利弊。
76 0
|
10月前
|
定位技术 计算机视觉 Windows
R语言生态学建模:增强回归树(BRT)预测短鳍鳗生存分布和影响因素
R语言生态学建模:增强回归树(BRT)预测短鳍鳗生存分布和影响因素
|
机器学习/深度学习 算法 计算机视觉
用于语义图像分割的弱监督和半监督学习:弱监督期望最大化方法
这篇论文只有图像级标签或边界框标签作为弱/半监督学习的输入。使用期望最大化(EM)方法,用于弱/半监督下的语义分割模型训练。
186 0
|
机器学习/深度学习 人工智能
一种基于广义模板的图神经网络,用于准确的有机反应性预测
一种基于广义模板的图神经网络,用于准确的有机反应性预测
170 0
|
机器学习/深度学习 运维 自动驾驶
【论文速递】TNNLS2022 - 一种用于小样本分割的互监督图注意网络_充分利用有限样本的视角
【论文速递】TNNLS2022 - 一种用于小样本分割的互监督图注意网络_充分利用有限样本的视角
300 0
【论文速递】TNNLS2022 - 一种用于小样本分割的互监督图注意网络_充分利用有限样本的视角
|
机器学习/深度学习 数据可视化 PyTorch
使用度量学习进行特征嵌入:交叉熵和监督对比损失的效果对比
使用度量学习进行特征嵌入:交叉熵和监督对比损失的效果对比
319 0
使用度量学习进行特征嵌入:交叉熵和监督对比损失的效果对比