一种基于广义模板的图神经网络,用于准确的有机反应性预测

简介: 一种基于广义模板的图神经网络,用于准确的有机反应性预测

化学反应性的可靠预测仍属于知识渊博的合成化学家。通过使用人工智能使这一过程自动化可以加速未来数字实验室的合成设计。虽然几种机器学习方法已显示出可喜的结果,但大多数当前模型都偏离了人类化学家基于电子变化分析和预测反应的方式。

在这里,韩国科学技术院(KAIST)的研究人员提出了一种化学驱动的图神经网络,称为 LocalTransform,它基于广义反应模板学习有机反应性,以描述反应物和产物之间电子配置的净变化。

所提出的概念大大减少了反应规则的数量,并展示了最先进的产品预测准确性。除了通用反应模板的内置可解释性外,该模型的高分准确度相关性允许用户评估机器预测的不确定性。

该研究以「A generalized-template-based graph neural network for accurate organic reactivity prediction」为题,于 2022 年 9 月 15 日发布在《Nature Machine Intelligence》。

预测有机反应结果是化学中的一个基本问题。基于有机化学的成熟直觉,化学家现在能够设计实验来制造用于不同目的的新分子。但是,它需要经验丰富的专业化学家来准确预测化学反应的结果。为了进一步帮助有机化学家并在数字化学时代实现全自动发现,智能机器智能可以准确预测有机反应的结果,可以大大加快新分子的设计过程。

最近,已经提出了几种基于机器学习的方法来预测有机反应结果,但仍然需要改进的反应预测模型才能达到足够的准确性,与普通有机化学家相当或更好。特别是,由于几种基于模板的方法的覆盖范围和可扩展性问题,科学家们提出了使用基于序列的模型或基于图的模型的无模板方法。

无模板方法中使用的方法可以进一步分为基于序列和基于图的方法。在基于序列的方法中,由 Schwaller 团队开发的 Molecular Transformer 及其变体被开发用于通过使用语言翻译模型将给定反应物的简化分子输入线输入系统(SMILES)翻译成产物。

在基于图的方法中,ELECTRO(an electron path prediction model) 和 MEGAN(Molecule Edit Graph Attention Network)以自回归方式预测来自反应物的产物,而 WLDN(Weisfeiler-Lehman Difference Network)、Symbolic 和 NERF(Non-autoregressive Electron Redistribution Framework)通过直接预测产物中键或电子的最终状态来预测从给定反应物中获得的产物。

虽然目前大多数高效反应预测方法都是无模板的,但是之前基于模板的方法通常性能较低;这并不是因为使用了从数据集中提取的预定义反应规则,而是因为在模板中包含了太多详细信息,因此提取的模板的覆盖率和可伸缩性较低。

尽管之前这些方法在公共反应数据集上表现出一定的准确性,但当前最先进的方法仍然以机械方式预测有机反应的结果,要么翻译化学语言,要么按顺序编辑分子图。相比之下,知识渊博的化学家通常通过识别反应中心并应用所学化学知识(例如命名反应)来预测有机反应性来预测反应产物。

在这里,KAIST 的研究人员设计了广义反应模板(GRT),一种仅描述基于原子映射的反应前后原子构型的局部变化但没有特定原子类型或官能团信息的反应模板,并提出一种名为 LocalTransform 的基于图的机器智能来预测反应产物。

图示:GRT的提取过程和示例。(来源:论文)

LocalTransform 通过识别反应中心以及要应用的 GRT 来预测反应结果。它通过全局注意力机制学习根据局部化学环境和选择性识别反应原子。

最终反应转化由反应模板分类器预测,该分类器为预测的化学反应中心建议最可能的 GRT。LocalTransform 在预测有机反应性方面的三个重要突破:

1、提议的 GRT 在化学上是直观的和通用的。提取的 GRT 可以描述所有测试反应的 99.7%,而前 100 个最流行的反应模板可以描述所有训练反应的 94.6%,从而解决了以前基于模板的方法的覆盖率和可扩展性问题。

2、研究人员展示了 LocalTransform 有前景的 top-k 产品预测精度,与以前基于图的方法相比有显著改进。

3、由于该模型是一种基于分类的方法,具有很强的分数-准确度相关性,它使用户能够理解不确定性并信任机器的预测。

图示:LocalTransform 在人类基准数据集上的性能。(来源:论文)

尽管该模型中的预测分数非常高,但对实验中几个「错误」预测示例的案例研究表明,有可能进一步检查这些数据以进行额外的管理。该方法的准确性在很大程度上受到反应映射的质量以及数据集中反应的多样性和丰富性的限制。

因此,研究人员期望未来可以通过使用更大的数据集和高质量的原子映射方法(如 Mappet 或 RXNMapper)来进一步改进模型。凭借 LocalTransform 的几个优点,研究人员设想如果在数据集中提供相应的元数据,该模型或可用于预测副产物和反应产率。

论文链接:https://www.nature.com/articles/s42256-022-00526-z

相关文章
|
5月前
|
机器学习/深度学习 人工智能 自然语言处理
ICLR 2024 Spotlight:训练一个图神经网络即可解决图领域所有分类问题!
【2月更文挑战第17天】ICLR 2024 Spotlight:训练一个图神经网络即可解决图领域所有分类问题!
161 2
ICLR 2024 Spotlight:训练一个图神经网络即可解决图领域所有分类问题!
|
5月前
|
机器学习/深度学习 算法 测试技术
【MATLAB】交叉验证求光滑因子的广义神经网络时序预测算法
【MATLAB】交叉验证求光滑因子的广义神经网络时序预测算法
83 0
|
3月前
|
机器学习/深度学习 搜索推荐 知识图谱
图神经网络加持,突破传统推荐系统局限!北大港大联合提出SelfGNN:有效降低信息过载与数据噪声影响
【7月更文挑战第22天】北大港大联手打造SelfGNN,一种结合图神经网络与自监督学习的推荐系统,专攻信息过载及数据噪声难题。SelfGNN通过短期图捕获实时用户兴趣,利用自增强学习提升模型鲁棒性,实现多时间尺度动态行为建模,大幅优化推荐准确度与时效性。经四大真实数据集测试,SelfGNN在准确性和抗噪能力上超越现有模型。尽管如此,高计算复杂度及对图构建质量的依赖仍是待克服挑战。[详细论文](https://arxiv.org/abs/2405.20878)。
65 5
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
Transformer 能代替图神经网络吗?
Transformer模型的革新性在于其自注意力机制,广泛应用于多种任务,包括非原始设计领域。近期研究专注于Transformer的推理能力,特别是在图神经网络(GNN)上下文中。
59 5
|
3月前
|
机器学习/深度学习 PyTorch 算法框架/工具
图神经网络是一类用于处理图结构数据的神经网络。与传统的深度学习模型(如卷积神经网络CNN和循环神经网络RNN)不同,
图神经网络是一类用于处理图结构数据的神经网络。与传统的深度学习模型(如卷积神经网络CNN和循环神经网络RNN)不同,
|
3月前
|
机器学习/深度学习 编解码 数据可视化
图神经网络版本的Kolmogorov Arnold(KAN)代码实现和效果对比
目前我们看到有很多使用KAN替代MLP的实验,但是目前来说对于图神经网络来说还没有类似的实验,今天我们就来使用KAN创建一个图神经网络Graph Kolmogorov Arnold(GKAN),来测试下KAN是否可以在图神经网络方面有所作为。
141 0
|
4月前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现深度学习模型:图神经网络(GNN)
使用Python实现深度学习模型:图神经网络(GNN)
161 1
|
5月前
|
机器学习/深度学习 自然语言处理 搜索推荐
【传知代码】图神经网络长对话理解-论文复现
在ACL2023会议上发表的论文《使用带有辅助跨模态交互的关系时态图神经网络进行对话理解》提出了一种新方法,名为correct,用于多模态情感识别。correct框架通过全局和局部上下文信息捕捉对话情感,同时有效处理跨模态交互和时间依赖。模型利用图神经网络结构,通过构建图来表示对话中的交互和时间关系,提高了情感预测的准确性。在IEMOCAP和CMU-MOSEI数据集上的实验结果证明了correct的有效性。源码和更多细节可在文章链接提供的附件中获取。
【传知代码】图神经网络长对话理解-论文复现
|
4月前
|
机器学习/深度学习 搜索推荐 PyTorch
【机器学习】图神经网络:深度解析图神经网络的基本构成和原理以及关键技术
【机器学习】图神经网络:深度解析图神经网络的基本构成和原理以及关键技术
924 2
|
5月前
|
机器学习/深度学习 JSON PyTorch
图神经网络入门示例:使用PyTorch Geometric 进行节点分类
本文介绍了如何使用PyTorch处理同构图数据进行节点分类。首先,数据集来自Facebook Large Page-Page Network,包含22,470个页面,分为四类,具有不同大小的特征向量。为训练神经网络,需创建PyTorch Data对象,涉及读取CSV和JSON文件,处理不一致的特征向量大小并进行归一化。接着,加载边数据以构建图。通过`Data`对象创建同构图,之后数据被分为70%训练集和30%测试集。训练了两种模型:MLP和GCN。GCN在测试集上实现了80%的准确率,优于MLP的46%,展示了利用图信息的优势。
73 1
下一篇
无影云桌面