用于语义图像分割的弱监督和半监督学习:弱监督期望最大化方法

简介: 这篇论文只有图像级标签或边界框标签作为弱/半监督学习的输入。使用期望最大化(EM)方法,用于弱/半监督下的语义分割模型训练。

这时一篇2015年的论文,但是他却是最早提出在语义分割中使用弱监督和半监督的方法,SAM的火爆证明了弱监督和半监督的学习方法也可以用在分割上。

背景知识

1、符号定义

X是图像。Y是分割映射。其中,ym∈{0,…,L}是位置m∈{1,…,m}处的像素标签,假设我们有背景和L个可能的前景标签,m是像素个数。

2、 有监督学习的流程

在上述完全监督情况下,目标函数为:

这里的θ为模型参数向量。每个像素的标签分布计算如下:

其中fm(ym|x,θ)为模型在像素m处的输出。J(θ)采用小批量SGD优化。

弱监督方法(图像级标注)

当只有图像级标注时,可以观察到的是图像值x和图像级标签z,但像素级分割y是潜在变量。那么我们有如下的概率图形模型:

给定之前的参数估计θ ',期望的完整数据对数似然为:

其中可以采用em近似,在算法的e步中估计潜在分割:

论文对EM进行了修改,增加了偏差Bias

在这种变体中,假设log P(z|y)对像素位置进行因式分解为:

这样可以在每个像素上分别估计e步分割:

参数bl=bfg,如果l > 0, b0=bbg,且bfg > bbg > 0。

可以简单的解释为:鼓励将一个像素分配给图像级标签之一。bfg > bbg比背景更能增强当前景类,鼓励完整的对象覆盖并避免退化的解决方案。

论文的参数是:BFG = 5, BBG = 3,除此以外,论文还使用了自适应的值:

EM-Adapt没有在EM-Fixed中使用固定值,而是鼓励至少将图像区域的ρl部分分配给类l(如果zl = 1),并强制不将像素分配给类l(如果zl = 0),这样EM-Adapt可以自适应地设置图像和类相关的偏差bl。ρfg = 20%, ρbg = 40%。

弱监督方法(边界框标注)

Bbox-Rect方法相当于简单地将边界框内的每个像素视为各自对象类的正面示例。通过将属于多个边界框的像素分配给具有最小面积的边界框来解决歧义。虽然边界框完全包围了对象,但也包含背景像素,这些像素是假阳性示例污染训练集。

为了过滤掉这些背景,论文还使用了DeepLab中使用的CRF。边界框的中心区域(框内像素的%)被约束为前景。用hold -out集估计CRF参数。

论文的方法Bbox-EM-Fixed:该方法是前面提到的EM-Fixed算法的一种变体,其中仅提升当前前景目标在边界框区域内的分数。

半监督方法(混合标注)

在混合标注的情况下,就变成了一种半监督的情况。在深度CNN模型的SGD训练中,每个mini-batch具有固定比例的强/弱标注图像,并使用论文提出的EM算法在每次迭代中估计弱标注图像的潜在语义分割。

结果

在EM-Fixed半监督设置中使用1464个像素级和9118个图像级注释,性能显著提高了,达到64.6%,接近完全监督67.6%。

在半监督设置中使用2.9k像素级注释和9k图像级注释,得到68.5%,接近完全监督70.3%。

Bbox-Seg比Bbox-Rect提高了8.1%,并且在像素级标注结果的7.0%以内。1464个像素级标注与弱边界框标注相结合,得到的结果为65.1%,仅比像素级标注差2.5%。

Bbox-EM-Fixed在添加更多标注时比Bbox-Seg有所改进,当在添加2.9k标注时,它的性能提高了1.0% (69.0% vs 68.0%)。

可以说的EM算法的e步比前景-背景分割预处理步骤能更好地估计目标掩模。

总结

这虽然是一篇很老的论文,但是它提出的思想到现在还是可用的,这对于我们了解现在的弱监督和半监督的学习方法也是非常有帮助的,所以推荐对于研究SAM方向的小伙伴都阅读一下,论文地址:

https://avoid.overfit.cn/post/36b0fbd642d640ceab41d0dfb885a95d

目录
相关文章
|
8月前
|
机器学习/深度学习 数据采集 算法
解码癌症预测的密码:可解释性机器学习算法SHAP揭示XGBoost模型的预测机制
解码癌症预测的密码:可解释性机器学习算法SHAP揭示XGBoost模型的预测机制
367 0
|
机器学习/深度学习 传感器 运维
综述:弱监督下的异常检测算法
# 一、前言 文章标题是: Weakly Supervised Anomaly Detection: A Survey 这是一篇针对“弱监督”异常检测的综述。 其中弱监督异常检测 简称为 WSAD - 论文链接:https://arxiv.org/abs/2302.04549 - 代码链接:https://github.com/yzhao062/wsad # 二、问题 针对异常检测问题,其
579 1
综述:弱监督下的异常检测算法
|
2天前
|
机器学习/深度学习 资源调度 算法
增强回归模型的可解释性:基于MCMC的混合建模与特征选择方法研究
本文介绍了一种基于正态回归混合模型的通用实现方法,结合MCMC算法,在参数估计的同时实现模型选择和特征选择。该方法突破了正态性假设限制,适用于非正态和非线性数据集,并通过回归混合和特征选择机制提升模型可解释性和性能。实验结果表明,该模型在复杂数据分类和参数估计方面表现出色,错误率仅为6%。此方法在客户群体识别、医疗数据分析等领域具有广泛应用价值。
18 10
增强回归模型的可解释性:基于MCMC的混合建模与特征选择方法研究
|
7天前
分布匹配蒸馏:扩散模型的单步生成优化方法研究
扩散模型在生成高质量图像方面表现出色,但其迭代去噪过程计算开销大。分布匹配蒸馏(DMD)通过将多步扩散简化为单步生成器,结合分布匹配损失和对抗生成网络损失,实现高效映射噪声图像到真实图像,显著提升生成速度。DMD利用预训练模型作为教师网络,提供高精度中间表征,通过蒸馏机制优化单步生成器的输出,从而实现快速、高质量的图像生成。该方法为图像生成应用提供了新的技术路径。
24 2
|
5月前
|
机器学习/深度学习 运维 算法
监督算法和无监督算法之间的区别
【8月更文挑战第23天】
182 0
|
8月前
|
机器学习/深度学习 人工智能 运维
【机器学习】Adaboost: 强化弱学习器的自适应提升方法
在机器学习领域,集成学习是一种通过结合多个弱模型以构建更强大预测模型的技术。Adaptive Boosting,简称Adaboost,是集成学习中的一种经典算法,由Yoav Freund和Robert Schapire于1996年提出。Adaboost通过迭代方式,自适应地调整数据样本的权重,使得每个后续的弱学习器更加关注前序学习器表现不佳的样本,以此逐步提高整体预测性能。本文将深入探讨Adaboost的工作原理、算法流程、关键特性、优势及应用场景,并简要介绍其实现步骤。
137 1
|
8月前
|
算法
有监督学习的模型评估和选择
有监督学习的模型评估和选择
|
8月前
|
计算机视觉
VanillaKD | 简单而强大, 对原始知识蒸馏方法的再审视
VanillaKD | 简单而强大, 对原始知识蒸馏方法的再审视
80 0
|
机器学习/深度学习 存储 自然语言处理
重新审视Prompt优化问题,预测偏差让语言模型上下文学习更强
重新审视Prompt优化问题,预测偏差让语言模型上下文学习更强
156 0
|
人工智能 数据处理 计算机视觉
用于半监督医学图像分割的多模态对比互学习和伪标签再学习方法
用于半监督医学图像分割的多模态对比互学习和伪标签再学习方法
634 0

热门文章

最新文章