高斯网络|机器学习推导系列(二十二)

简介: 高斯网络|机器学习推导系列(二十二)

一、概述


高斯网络是一种概率图模型,对于普通的概率图模型,其随机变量的概率分布是离散的,而高斯网络的概率分布是连续的高斯分布。高斯网络也分为有向图和无向图,其中有向图叫做高斯贝叶斯网络(Gaussian Bayesian Network,GBN),无向图叫做高斯马尔可夫网络(Gaussian Markov Network,GMN)。概率图模型的分类大致如下:


%2FJFSVU446ZO9R(Y[S]}%I.png

H_X~(V6~_~BW[3Y8$D)Z2LJ.png


二、高斯贝叶斯网络


  1. 有向概率图模型的因子分解


GBN作为一种有向概率图模型,同样服从有向图的因子分解:


M$W[(5S[~GX~8]@JQPV2P6A.png


  1. 线性高斯模型


GBN从局部来看是一个线性高斯模型,举例来说,就是下面两个两个随机变量之间满足线性关系,同时包含一定的噪声,噪声服从高斯分布:


T@I4_ZQEKXBA`S1`)1XUT_F.png

           线性高斯模型


其概率表示如下:


H2S{2%NVI9U`CPJ~C%_34YU.png

  1. 类比线性动态系统


对于GBN是线性高斯模型这一点可以类比之前讲过的线性动态系统(Linear Dynamic System,LDS),参考链接:卡尔曼滤波|机器学习推导系列(十八)


LDS是一种特殊的GBN,它的概率图模型如下:

]QG~7]H51_QPV5ZLG1ENTKO.png


                                                  LDS


在LDS中每个节点都只有一个父亲节点,其概率为:


MH@LN[`1)CV1]T(}0G$6CJ3.png


写成条件概率的形式就是:


W}3S{8VL0P53()}RWYT7}$C.png


LDS 的假设是相邻时刻的变量之间的依赖关系,因此是一个局域模型,而GBN每⼀个节点的父亲节点不⼀定只有⼀个,因此可以看成是⼀个全局的模型。


  1. 高斯贝叶斯网络的表示


在GBN中,对于每一个节点,其概率可以写成以下标准形式:

LRGC9~@F228QHO[3{C9Y3A7.png

然后将前面的式子写成向量形式:


BTT}DCQF0_TJC6K{KR]FK)D.png


整理一下,也就有:


Y0`GHEV)G5DA~Q8J2ALFVQM.png


因此协方差矩阵就可以写成:


%7A4`5`72I9C5B20)R255SP.png


三、高斯马尔可夫网络


  1. 高斯贝叶斯网络的表示


对于无向图的高斯网络,其概率可以表示为:


PC06DZYT8OP71U`}[Q67ZOF.png


而对于多维高斯分布的概率表达形式:


H$8KR0AGY(Z0U97L0M%B_00.png


我们可以根据上式进行整理来探索上述两个不同的概率公式之间的联系:


ZTD61TOX19ZGB8M24J@[J2E.png

JU6U6IRM1E6RMG4B0T3`73V.png

讨论上面的内容是为了说明以下结论:一个多维高斯分布对应着一个GMN,我们在学习这个多维高斯分布时,除了学习到这个分布的参数,同时也学习到了这个GMN的结构,这是因为如果我们学习到{94]0Y`673{Y40MKS}AXLP1.png的话,这表示在概率图上对应的两个节点之间是没有边的。


  1. 其他性质


对于无向图高斯网络来说,除了满足全局独立性和条件独立性以外,还满足另外一个性质,也就是:

T53U$P%98E`NIO9R%0XWISP.png

上述性质的得出是根据JOTOL{YV$I7_CV64A(%1XLX.png来求解条件概率分布,而求解高斯分布的条件概率分布的方法在之前的课程中已经介绍过了,参考链接:高斯分布|机器学习推导系列(二)

相关文章
|
3天前
|
机器学习/深度学习 数据采集 自然语言处理
理解并应用机器学习算法:神经网络深度解析
【5月更文挑战第15天】本文深入解析了神经网络的基本原理和关键组成,包括神经元、层、权重、偏置及损失函数。介绍了神经网络在图像识别、NLP等领域的应用,并涵盖了从数据预处理、选择网络结构到训练与评估的实践流程。理解并掌握这些知识,有助于更好地运用神经网络解决实际问题。随着技术发展,神经网络未来潜力无限。
|
3天前
|
机器学习/深度学习 运维 算法
基于机器学习的网络安全威胁检测系统优化策略
【4月更文挑战第21天】 随着网络环境的日趋复杂,传统的安全防御机制在应对日益狡猾的网络攻击时显得力不从心。本文提出了一种结合深度学习与行为分析的网络安全威胁检测系统的优化策略,旨在提高对先进持续威胁(APT)和零日攻击的识别能力。通过构建一个多层次特征提取框架,并引入自适应学习算法,该系统能够实时学习网络行为模式,有效区分正常行为与潜在威胁。同时,文中探讨了模型训练过程中的数据增强、对抗性样本生成以及模型蒸馏等技术的应用,以提升模型的泛化能力和鲁棒性。
|
3天前
|
机器学习/深度学习 算法 数据挖掘
PYTHON银行机器学习:回归、随机森林、KNN近邻、决策树、高斯朴素贝叶斯、支持向量机SVM分析营销活动数据|数据分享-2
PYTHON银行机器学习:回归、随机森林、KNN近邻、决策树、高斯朴素贝叶斯、支持向量机SVM分析营销活动数据|数据分享
|
3天前
|
机器学习/深度学习 人工智能 自然语言处理
【机器学习】什么是贝叶斯网络?
【5月更文挑战第10天】【机器学习】什么是贝叶斯网络?
|
3天前
|
机器学习/深度学习 PyTorch TensorFlow
【Python机器学习专栏】循环神经网络(RNN)与LSTM详解
【4月更文挑战第30天】本文探讨了处理序列数据的关键模型——循环神经网络(RNN)及其优化版长短期记忆网络(LSTM)。RNN利用循环结构处理序列依赖,但遭遇梯度消失/爆炸问题。LSTM通过门控机制解决了这一问题,有效捕捉长距离依赖。在Python中,可使用深度学习框架如PyTorch实现LSTM。示例代码展示了如何定义和初始化一个简单的LSTM网络结构,强调了RNN和LSTM在序列任务中的应用价值。
|
3天前
|
机器学习/深度学习 PyTorch TensorFlow
【Python机器学习专栏】卷积神经网络(CNN)的原理与应用
【4月更文挑战第30天】本文介绍了卷积神经网络(CNN)的基本原理和结构组成,包括卷积层、激活函数、池化层和全连接层。CNN在图像识别等领域表现出色,其层次结构能逐步提取特征。在Python中,可利用TensorFlow或PyTorch构建CNN模型,示例代码展示了使用TensorFlow Keras API创建简单CNN的过程。CNN作为强大深度学习模型,未来仍有广阔发展空间。
|
3天前
|
机器学习/深度学习 自然语言处理 语音技术
【Python 机器学习专栏】Python 深度学习入门:神经网络基础
【4月更文挑战第30天】本文介绍了Python在深度学习中应用于神经网络的基础知识,包括神经网络概念、基本结构、训练过程,以及Python中的深度学习库TensorFlow和PyTorch。通过示例展示了如何使用Python实现神经网络,并提及优化技巧如正则化和Dropout。最后,概述了神经网络在图像识别、语音识别和自然语言处理等领域的应用,并强调掌握这些知识对深度学习的重要性。随着技术进步,神经网络的应用将持续扩展,期待更多创新。
|
3天前
|
机器学习/深度学习 数据采集 安全
基于机器学习的网络安全威胁检测系统
【4月更文挑战第30天】 随着网络技术的迅猛发展,网络安全问题日益凸显。传统的安全防御机制在应对复杂多变的网络攻击时显得力不从心。为了提高威胁检测的准确性和效率,本文提出了一种基于机器学习的网络安全威胁检测系统。该系统通过集成多种数据预处理技术和特征选择方法,结合先进的机器学习算法,能够实时识别并响应各类网络威胁。实验结果表明,与传统方法相比,本系统在检测率、误报率以及处理速度上均有显著提升,为网络安全管理提供了一种新的技术手段。
|
3天前
|
机器学习/深度学习 数据采集 监控
构建高效机器学习模型的策略与实践云端防御:融合云计算与网络安全的未来策略
【4月更文挑战第29天】 在数据驱动的时代,构建一个高效的机器学习模型对于解决复杂问题至关重要。本文将探讨一系列策略和最佳实践,旨在提高机器学习模型的性能和泛化能力。我们将从数据处理的重要性入手,进而讨论模型选择、训练技巧、超参数调优以及模型评估方法。通过这些策略的实施,读者将能够构建出更加健壮、准确的模型,并有效地避免过拟合和欠拟合问题。
|
3天前
|
机器学习/深度学习 安全 算法
学习机器学习(ML)在网络安全中的重要性
机器学习(ML)是人工智能的一个分支,它使用算法来使计算机系统能够自动地从数据和经验中进行学习,并改进其性能,而无需进行明确的编程。机器学习涉及对大量数据的分析,通过识别数据中的模式来做出预测或决策。这些算法会不断地迭代和优化,以提高其预测的准确性。
19 0

热门文章

最新文章