【机械臂优化】基于粒子群算法实现考虑关节限位约束下的冗余机械臂求逆解附Matlab代码)

简介: 【机械臂优化】基于粒子群算法实现考虑关节限位约束下的冗余机械臂求逆解附Matlab代码)

1 简介

image.gif编辑

image.gif编辑

image.gif编辑

image.gif编辑

2 部分代码

%%%%%%%%%%%%%%%%%%采用PSO算法对运动学冗余机械臂求一组最优逆解%%%%%%%%%%%%%%%%%%%  %该程序对一个具有四自由度的机械臂做位置控制,由操作空间中的位置坐标,反解出关节空间中的各个关节角度tic   %该函数表示计时开始  %------初始格式化--------------------------------------------------  clear all;  clc;  format long;  %------给定初始化条件----------------------------------------------  c1=1.4962;             %加速常数即学习因子1  c2=1.4962;             %加速常数即学习因子2  w=0.7298;              %惯性权重  MaxDT=500;             %最大迭代次数,迭代次数也可以根据适应度函数值的精度是否满足要求来定 D=4;                   %搜索空间维数(一个机械臂的关节变量的个数为4)  N=40;                  %群体个体数目  eps=10^(-7);           %设置精度(在已知最小值时候用)  alpha=10^(-5);%机械臂参数(D-H参数)l=0.085;                      %琴竹的长度单位m  0.26 0.85a1=0.175;d2=0.082;a3=0.38; a4=0.26;%定义目标点的空间位置p_f=[-0.0516,-0.4006,-0.4135];  %%% -0.6 -0.35 0.52 -0.52%机械臂各关节的初始角度theta1=-pi/2;theta2=pi/2;theta3=-pi/2;theta4=0;q0=[theta1,theta2,theta3,theta4]';%------初始化种群个体的位置和速度------------  k=0.5;  %求取粒子速度系数  vmax=k*xmax  根据各关节的限位范围确定搜索空间%各关节的最大限位和最小限位x_min(1)=-2.62; x_max(1)=-0.52;x_min(2)=0.52;x_max(2)=2.62;x_min(3)=-2.35;x_max(3)=-0.79;x_min(4)=-1;x_max(4)=1;%各关节速度的上下限v_min(1)=x_max(1)*(-k);v_max(1)=x_max(1)*k;v_min(2)=x_max(1)*(-k);v_max(2)=x_max(1)*k;v_min(3)=x_max(1)*(-k);v_max(3)=x_max(1)*k;v_min(4)=x_max(1)*(-k);v_max(4)=x_max(1)*k;for i=1:N    x(i,1)=rand(1)*(x_min(1)-x_max(1))+x_max(1);  %产生一个服从正态分布的随机数作为初始化位置    v(i,1)=rand(1)*(x_max(1)*(-k)-x_max(1)*k)+x_max(1)*k;  %产生一个服从正态分布的随机数作为初始化速度    x(i,2)=rand(1)*(x_min(2)-x_max(2))+x_max(2);      v(i,2)=rand(1)*(x_max(2)*(-k)-x_max(2)*k)+x_max(2)*k;         x(i,3)=rand(1)*(x_min(3)-x_max(3))+x_max(3);      v(i,3)=rand(1)*(x_max(3)*(-k)-x_max(3)*k)+x_max(3)*k;     x(i,4)=rand(1)*(x_min(4)-x_max(4))+x_max(4);      v(i,4)=rand(1)*(x_max(4)*(-k)-x_max(4)*k)+x_max(4)*k;end%根据机械臂的正向运动学公式,计算机械臂末端点在操作空间中的位置for i=1:N    p_e(i,1)=a1 - a4*(cos(x(i,1))*sin(x(i,2))*sin(x(i,3)) - cos(x(i,1))*cos(x(i,2))*cos(x(i,3))) - d2*sin(x(i,1)) - ...        l*(sin(x(i,1))*sin(x(i,4)) + cos(x(i,4))*(cos(x(i,1))*sin(x(i,2))*sin(x(i,3)) - cos(x(i,1))*cos(x(i,2))*cos(x(i,3)))) + a3*cos(x(i,1))*cos(x(i,2));    p_e(i,2)=d2*cos(x(i,1)) - a4*(sin(x(i,1))*sin(x(i,2))*sin(x(i,3)) - cos(x(i,2))*cos(x(i,3))*sin(x(i,1))) + ...        l*(cos(x(i,1))*sin(x(i,4)) - cos(x(i,4))*(sin(x(i,1))*sin(x(i,2))*sin(x(i,3)) - cos(x(i,2))*cos(x(i,3))*sin(x(i,1)))) + a3*cos(x(i,2))*sin(x(i,1));    p_e(i,3)=-a4*(cos(x(i,2))*sin(x(i,3)) + cos(x(i,3))*sin(x(i,2))) - a3*sin(x(i,2)) - l*cos(x(i,4))*(cos(x(i,2))*sin(x(i,3)) + cos(x(i,3))*sin(x(i,2)));end%------先计算各个粒子的适应度,并初始化个体最优位置y和全局最优位置Pg--------  %适应度函数是跟上一关节的状态做对比的,该种情况只做一个达点运动,即与初始角度值做比较%此时计算p(i)使用的均为初始化的值for i=1:N      %p(i)为适应度函数    p(i)=sqrt((p_f(1)-p_e(i,1))^2+(p_f(2)-p_e(i,2))^2+(p_f(3)-p_e(i,3))^2)+alpha*((1*(x(i,1)-q0(1)))^2+(0.5*(x(i,2)-q0(2)))^2+(0.5*(x(i,3)-q0(3)))^2+(0.1*(x(i,4)-q0(4)))^2);    y(i,:)=x(i,:);          %初始化个体最优位置y为在时间步t=0时的粒子位置   y()各个个体的初始化最优位置 end  Pg=1;        %Pg_x为全局最优位置,最优位置包含了4个关节的角度值(初始假想最优值)Pg_x=x(1,:);    %%%%%%%%%%更新全局最优位置%%%%%%%%%%%%%%%%          record(:,:,t)=x(:,:);                %记录每一次学习过程中的中间位置值    %%%至此学习完了1代%%%%    Pbest(t)=fit(Pg);                    %保存每一代的群体最佳位置    endtoc %该函数表示计时结束%输出最后的计算结果disp('函数的全局最优位置为:')  for i=1:D      fprintf('x(%d)=%s\n',i,Pg_x(i));  end  %验证最后求得的最优解中各个关节角度是否均在限位以内if Pg_x(1)>=x_min(1) & Pg_x(1)<=x_max(1) & Pg_x(2)>=x_min(2) & Pg_x(2)<=x_max(2) & Pg_x(3)>=x_min(3) & Pg_x(3)<=x_max(3) & Pg_x(4)>=x_min(4) & Pg_x(4)<=x_max(4)  fprintf('OK!\n');endfprintf('最后得到的优化极值为:%s\n',fit(Pg));   %应该观察fit(Pg)的数量级p_e(Pg,:)figureplot(Pbest)xlabel('迭代次数')ylabel('适应度值')

3 仿真结果

image.gif编辑

4 参考文献

[1]石建平, 刘鹏, 陈冬云. 基于改进粒子群优化算法的冗余机械臂逆运动学求解[J]. 机械传动, 2021, 45(2):7.

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。

5 代码下载

image.gif编辑

相关文章
|
13天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
7天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
7天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如&quot;How are you&quot;、&quot;I am fine&quot;、&quot;I love you&quot;等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
15天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
12天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
|
12天前
|
算法
通过matlab对比遗传算法优化前后染色体的变化情况
该程序使用MATLAB2022A实现遗传算法优化染色体的过程,通过迭代选择、交叉和变异操作,提高染色体适应度,优化解的质量,同时保持种群多样性,避免局部最优。代码展示了算法的核心流程,包括适应度计算、选择、交叉、变异等步骤,并通过图表直观展示了优化前后染色体的变化情况。
|
10天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。
|
14天前
|
算法 决策智能
基于遗传优化算法的TSP问题求解matlab仿真
本项目使用遗传算法解决旅行商问题(TSP),目标是在四个城市间找到最短路径。算法通过编码、选择、交叉、变异等步骤,在MATLAB2022A上实现路径优化,最终输出最优路径及距离。
|
19天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
16天前
|
算法
通过matlab分别对比PSO,反向学习PSO,多策略改进反向学习PSO三种优化算法
本项目使用MATLAB2022A版本,对比分析了PSO、反向学习PSO及多策略改进反向学习PSO三种优化算法的性能,主要通过优化收敛曲线进行直观展示。核心代码实现了标准PSO算法流程,加入反向学习机制及多种改进策略,以提升算法跳出局部最优的能力,增强全局搜索效率。