Go语言核心手册-8.sync.WaitGroup

简介: WaitGroup是开箱即用和并发安全的,可以通过它很方便地实现一对多goroutine协作流程,即:一个分发子任务的goroutine,和多个执行子任务的goroutine,共同来完成一个较大的任务。在使用WaitGroup值的时候,我们一定要注意,千万不要让其中的计数器的值小于0,否则就会引发 panic。另外,我们最好用“先统一Add,再并发Done,最后Wait”这种标准方式,来使用WaitGroup值, 尤其不要在调用Wait方法的同时,并发地通过调用Add方法去增加其计数器的值,因为这也有可能引发 panic。

8.1 基础知识


这个是通过通道,来控制goroutine协程结束的示例:

func coordinateWithChan() { sign := make(chan struct{}, 2) num := int32(0) fmt.Printf("The number: %d [with chan struct{}]\n", num) max := int32(10) go addNum(&num, 1, max, func() {  sign <- struct{}{} }) go addNum(&num, 2, max, func() {  sign <- struct{}{} }) <-sign <-sign}


上一节我们学习过,sign通道读取数据时,如果命中“有缓冲channel + 缓冲为空”的情况,会阻塞,只有两个go协程全部执行完毕,往sign塞数据后,程序才会退出,但是这种方式非常繁琐。在这种应用场景下,我们可以选用另外一个同步工具sync.WaitGroup(以下简称WaitGroup类型),它比通道更加适合实现这种一对多的 goroutine 协作流程。WaitGroup类型是开箱即用的,也是并发安全的,它拥有三个指针方法:Add、Done和Wait,你可以想象该类型中有一个计数器,它的默认值是0,我们可以通过调用该类型值的Add方法来增加,或者减少这个计数器的值,代码升级如下:

func coordinateWithWaitGroup() { var wg sync.WaitGroup wg.Add(2) // 计数器加2 num := int32(0) fmt.Printf("The number: %d [with sync.WaitGroup]\n", num) max := int32(10) go addNum(&num, 3, max, wg.Done)  // 计数器减1 go addNum(&num, 4, max, wg.Done)  // 计数器减1 wg.Wait() // 会阻塞,直到计数器值为0,然后就会被唤醒}

Add会增加计数器的值,Done会减少计数器的值,Wait会一直阻塞,直到计数器的值重新回归为0,然后才会被唤醒,继续往后面执行。


8.2 常见的坑


如果使用不当,容易抛出Panic,我就把相关知识点列出来:

  • 坑1(计数器为负数):sync.WaitGroup类型值中计数器的值如果小于0,会直接抛出Panic。
  • 坑2(同时调用Add和Wait):如果我们对它的Add方法的首次调用,与对它的Wait方法的调用是同时发起的,比如,在同时启用的两个 goroutine 中,分别调用这两个方法,那么就有可能会让这里的Add方法抛出一个 panic。
  • 坑3(跨越计数周期):如果在一个此类值的Wait方法被执行期间,跨越了两个计数周期,那么就会引发一个 panic。

对于坑1,当调用Add方法,传入一个负数的时候可能会出现,所以我们使用WaitGroup时,需要保证计数一直大于0。对于坑2,需要说明一点,虽然WaitGroup值本身并不需要初始化,但是尽早地增加其计数器的值,还是非常有必要的。对于坑3,我们需要先了解WaitGroup的计数周期:

)(JBS)SUPI}Q{$XF]V%J)1D.png

计数周期:WaitGroup中计数器值由0变为了某个正整数,而后又经过一系列的变化,最终由某个正整数又变回了0。也就是说,只要计数器的值始于0又归为0,就可以被视为一个计数周期。在一个此类值的生命周期中,它可以经历任意多个计数周期。但是,只有在它走完当前的计数周期之后,才能够开始下一个计数周期。那坑3什么情况会出现呢?场景如下:当前的goroutine因调用Wait方法被阻塞的时候,另一个goroutine调用了该值的Done方法,并使其计数器的值变为了0,这会唤醒当前的goroutine,并使它试图继续执行Wait方法中其余的代码。但在这时,又有一个goroutine调用了它的Add方法,并让其计数器的值又从0变为了某个正整数。此时,这里的Wait方法就会立即抛出一个panic。根据坑2和坑3,总结如下:不要把增加其计数器值的操作和调用其Wait方法的代码,放在不同的 goroutine 中执行。换句话说,要杜绝对同一个WaitGroup值的两种操作的并发执行,标准方式应该为“先统一Add,再并发Done,最后Wait”。


8.3 并发实例:Push


对于上一章的并发示例,当时提了一个问题:每消费一条Channel数据,需要记录Push发送成功,但是一条Channel数据包含2-3个Push内容(IOS/Android/PC),程序记录Push成功前,如何保证这2-3个Push都发送完毕了呢?根据“先统一Add,再并发Done,最后Wait”原则,看下面代码:

var (   wg    sync.WaitGroup   succs []*NotifyMessage   fails []*NotifyMessage)for _, message := range t.PushMessages {   wg.Add(1)  // 计数加1   go func(message mipush.PushMessage) {      defer func() {         wg.Done() // 计数减1      }()      // 发送IOS/Android/PC等渠道的Push      // 代码省略...   }(message)}wg.Wait() // 阻塞,直到计数器值为0,然后就会被唤醒// 数据统计SendNotify(t.ID, t.TotalPage, t.TaskPage, t.AppType, t.AppLocal, fails, succs)


8.4 总结


WaitGroup是开箱即用和并发安全的,可以通过它很方便地实现一对多goroutine协作流程,即:一个分发子任务的goroutine,和多个执行子任务的goroutine,共同来完成一个较大的任务。在使用WaitGroup值的时候,我们一定要注意,千万不要让其中的计数器的值小于0,否则就会引发 panic。另外,我们最好用“先统一Add,再并发Done,最后Wait”这种标准方式,来使用WaitGroup值, 尤其不要在调用Wait方法的同时,并发地通过调用Add方法去增加其计数器的值,因为这也有可能引发 panic。

相关文章
|
19小时前
|
存储 编译器 Go
|
2天前
|
安全 Java Go
探索Go语言在高并发环境中的优势
在当今的技术环境中,高并发处理能力成为评估编程语言性能的关键因素之一。Go语言(Golang),作为Google开发的一种编程语言,以其独特的并发处理模型和高效的性能赢得了广泛关注。本文将深入探讨Go语言在高并发环境中的优势,尤其是其goroutine和channel机制如何简化并发编程,提升系统的响应速度和稳定性。通过具体的案例分析和性能对比,本文揭示了Go语言在实际应用中的高效性,并为开发者在选择合适技术栈时提供参考。
|
20小时前
|
算法 安全 Go
|
2天前
|
监控 NoSQL Go
Go语言中高效使用Redis的Pipeline
Redis 是构建高性能应用时常用的内存数据库,通过其 Pipeline 和 Watch 机制可批量执行命令并确保数据安全性。Pipeline 类似于超市购物一次性结账,减少网络交互时间,提升效率。Go 语言示例展示了如何使用 Pipeline 和 Pipelined 方法简化代码,并通过 TxPipeline 保证操作原子性。Watch 机制则通过监控键变化实现乐观锁,防止并发问题导致的数据不一致。这些机制简化了开发流程,提高了应用程序的性能和可靠性。
7 0
|
4天前
|
NoSQL Go Redis
Go语言中如何扫描Redis中大量的key
在Redis中,遍历大量键时直接使用`KEYS`命令会导致性能瓶颈,因为它会一次性返回所有匹配的键,可能阻塞Redis并影响服务稳定性。为解决此问题,Redis提供了`SCAN`命令来分批迭代键,避免一次性加载过多数据。本文通过两个Go语言示例演示如何使用`SCAN`命令:第一个示例展示了基本的手动迭代方式;第二个示例则利用`Iterator`简化迭代过程。这两种方法均有效地避免了`KEYS`命令的性能问题,并提高了遍历Redis键的效率。
16 0
|
5天前
|
监控 Serverless Go
Golang 开发函数计算问题之Go 语言中切片扩容时需要拷贝原数组中的数据如何解决
Golang 开发函数计算问题之Go 语言中切片扩容时需要拷贝原数组中的数据如何解决
|
6天前
|
关系型数据库 MySQL 数据库连接
Go语言中使用sqlx来操作事务
在应用中,数据库事务保证操作的ACID特性至关重要。`github.com/jmoiron/sqlx`简化了数据库操作。首先安装SQLX和MySQL驱动:`go get github.com/jmoiron/sqlx`和`go get github.com/go-sql-driver/mysql`。导入所需的包后,创建数据库连接并使用`Beginx()`方法开始事务。通过`tx.Commit()`提交或`tx.Rollback()`回滚事务以确保数据一致性和完整性。
8 0
|
3月前
|
开发框架 安全 中间件
Go语言开发小技巧&易错点100例(十二)
Go语言开发小技巧&易错点100例(十二)
51 1
|
9天前
|
JSON 中间件 Go
go语言后端开发学习(四) —— 在go项目中使用Zap日志库
本文详细介绍了如何在Go项目中集成并配置Zap日志库。首先通过`go get -u go.uber.org/zap`命令安装Zap,接着展示了`Logger`与`Sugared Logger`两种日志记录器的基本用法。随后深入探讨了Zap的高级配置,包括如何将日志输出至文件、调整时间格式、记录调用者信息以及日志分割等。最后,文章演示了如何在gin框架中集成Zap,通过自定义中间件实现了日志记录和异常恢复功能。通过这些步骤,读者可以掌握Zap在实际项目中的应用与定制方法
go语言后端开发学习(四) —— 在go项目中使用Zap日志库
|
7天前
|
算法 NoSQL 中间件
go语言后端开发学习(六) ——基于雪花算法生成用户ID
本文介绍了分布式ID生成中的Snowflake(雪花)算法。为解决用户ID安全性与唯一性问题,Snowflake算法生成的ID具备全局唯一性、递增性、高可用性和高性能性等特点。64位ID由符号位(固定为0)、41位时间戳、10位标识位(含数据中心与机器ID)及12位序列号组成。面对ID重复风险,可通过预分配、动态或统一分配标识位解决。Go语言实现示例展示了如何使用第三方包`sonyflake`生成ID,确保不同节点产生的ID始终唯一。
go语言后端开发学习(六) ——基于雪花算法生成用户ID